Skydel Software-Defined GNSS Simulator
Sky-High Performance, Unmatched Flexibility

As your GNSS testing needs evolve, Skydel is there to meet them

Performance testing of GNSS equipment designs is crucial in today’s increasingly complex RF landscape. Thorough lab testing requires simulation systems that can reproduce a range of satellite constellations, realistic conditions, and even attacks.

Designed to meet the most demanding simulation requirements, Skydel excels at recreating a broad variety of real-world scenarios in the lab. It enables a wide range of possible simulator configurations, from simple desktop setup to multi-band anechoic chambers. And best of all, it offers superb in-field upgradability, supported by Orolia’s team of GNSS experts.

Benefits

- **Rapid integration** into your test routines and processes — stay focused on your test challenges
- **Immediate upgrades** to enhanced capabilities and access to new features — update your test bench when it suits you
- **Ability to reuse hardware** for other projects in the lab — quickly re-deploy components to meet changing needs
Multiple configurations. Same simulation engine.

Skydel is packed with a rich feature set — multi-constellation/multi-frequency signal generation, remote control from user-defined scripts, and integrated interference generation. Most simulation parameters are controllable on the fly, while the simulation is running.

From building your own configuration to complete turnkey systems, Skydel adapts to all your GNSS simulation needs.

**GPU-Powered**

Traditional GNSS simulators rely on custom silicon (FPGAs) and custom designed hardware, which are either too expensive or provide limited capabilities.

Skydel uses GPU-accelerated computing to create GNSS/RF signals digitally, and software-defined radios (SDR) to output RF — resulting in unequalled scalability and flexibility.

**Key Features**

- Multi-constellation, multi-frequency (GPS, GLONASS, Galileo, Beidou, SBAS)
- Hundreds of satellites can be simulated in real time using COTS hardware
- Integrated dynamic interferences generation (GNSS and non-GNSS)
- User-defined waveforms (Chirp, CW, BOC, BPSK, AWGN, and pulse modulations combination)
- 1000 Hz simulation iteration rate
- High-end performance (precision, resolution, ultra-high dynamic motion)
- Powerful automation & intuitive API (Python, C#, C++ and LabVIEW open source client)
- Differential GNSS and multi-vehicle simulation
- HIL with real-time, on-the-fly scenario re-configuration
- 6DoF receiver & transmitter trajectories/LEO-GEO orbit trajectories
- Multipath support
- Ability to import multiple file formats: CSV, KML, NMEA, etc.
- GNSS satellite orbit modification and custom fixed position
- Unlimited pseudorange additive ramps
- Scenario editor with integrated maps
- Flexible licensing and unparalleled upgradability

**Specifications**

**Supported GNSS Constellations**

- GPS L1 C/A, L1C, L1P, L2P, L2C (open service), L5, SBAS
- GPS encrypted codes: Y, M (option available through our Talen-X partner)
- GLONASS G1 & G2 (open service)
- Galileo E1 & E5 (open service)
- BeiDou B1 & B2

**Frequency Bands**

- All GNSS bands
- Possibility of more than 2 RF outputs with SDR combination
- Baseband complex (zero IF) through IQ samples logging

**Operating Systems**

- Windows and Linux

**Signal Dynamics**

- Maximal relative velocity: 1,500,000 m/s
- Maximal relative acceleration: no limits
- Maximal relative jerk: no limits
- 1000 Hz simulation iteration rate

**Signal Accuracy**

- Pseudorange < 1mm
- Pseudorange rate < 1mm/s
- Inter-channel bias < 0

**Signal Quality**

- Spurious and Harmonics < -40dBc
- Phase noise < 0.005 rad RMS
- Frequency stability < ±25x10^-9 (with internal GPSDO unlocked)

For More Information:

**Vicom Australia**
1064 Centre Rd
Oakleigh South Vic 3167
Australia
1300 360 251
info@vicom.com.au
www.vicom.com.au

**Vicom New Zealand**
Grd Floor, 60 Grafton Road
Auckland 1010
New Zealand
+64 9 379 4596
info@vicom.co.nz
www.vicom.co.nz

www.orolia.com
sales@orolia.com

© 2019 Orolia