
The Advent of Tightly Synchronized Clocks 
in Distributed Systems
Murat Demirbas
May 1, 2018

1. Time in distributed systems
The last decade has brought a paradigm shift in computing systems from single processor devices 
— whose performance plateaued — to distributed computing systems. In distributed systems, 
nodes execute concurrently with limited information about what the other nodes are executing at 
the moment. Thus, a fundamental problem in distributed systems is to coordinate the execution of 
these independent nodes effectively to achieve performance while preserving correctness.

Unfortunately, distributed coordination is a notoriously tricky problem. Since the nodes do not have 
access to a shared state and a common clock, they need to communicate and synchronize state 
frequently in order to coordinate on the order of events. However, excessive communication hinders 
the performance/scalability of the distributed system. Due to this inherent tradeoff, distributed 
systems designers need to walk a tight rope.

A key component of distributed coordination is the enforcement of consistent views at all nodes 
for the ordering of significant events. To this end, events are “timestamped” with logical counters 
or — increasingly lately — with tightly-synchronized physical time.

To explain the concepts of counters, timestamps, causality, and happened-before, we first look at a 
brief history of time in distributed systems in this section. We describe the rise of better synchronized 
clocks in Section 2, and applications of these tightly synchronized clocks in distributed systems in 
Section 3.

www.orolia.com



www.orolia.com

Technical Specifications: SecureSync SAASM

1.1 Logical clocks
Logical clocks (LC) [11] were proposed in 1978 by Leslie Lamport as a way of timestamping and 
ordering events in an asynchronous distributed system. LC are entirely divorced from wallclock/
physical clocks and real time: the nodes do not have access to clocks, there is no bound on message 
delay, and on the speed/rate of processing of nodes.

The causality relationship LC captured is called happened-before (hb), and is defined based on 
passing of information, rather than passing of time. Event A happened-before event B, if A and B 
are on the same node and A comes earlier than B, or A is a send event and B is the corresponding 
receive event, or happened-before is defined transitively based on the previous two.

LC has some drawbacks. Using LC, it is not possible to query events in relation to real time. 
Moreover, if two events do not have any happened-before causal information flow between them, 
LC cannot order them and declares them to be concurrent even when the two events are apart 
by several minutes in real time. Finally, for capturing hb, LC assume all communication occur using 
LC timestamped messages and there are no backchannels in the system, however, this is hard to 
enforce for today’s large scale heterogeneous system of systems.

1.2 Loosely synchronized clocks

Network Time Protocol (NTP) [14] is a clock synchronization protocol between computer systems 
across the Internet. In 1988, 10 years after the logical clocks paper, NTPv1 was developed. NTP 
works by estimating the time that messages take to travel between hosts, so that a host can account 
for this travel time when adjusting its clock to match a more authoritative source with more precise 
clock. However, a big source of error for NTP is the asymmetry in the links, where there is no delay 
one way, but a lot of latency and queuing delay on the other way. Due to the multihop and often 
asymmetric bandwidth communication in Internet, it is hard to tightly bound NTP accuracy. NTP can 
usually maintain time to within tens of milliseconds over the public Internet, but occasional periods 
of hundreds of milliseconds errors are possible due to communication failures or cold starts.

Due to the uncertainty in NTP synchronization, it is impossible to compare/order events that have 
close timestamps. Thus, NTP timestamps may violate the happened before relation: even though 
event E happened-before (i.e., causally precedes) event F, NTP clock on the node that F occurs 
may assign F a smaller NTP timestamp than that of E’s. It is also possible that NTP clocks violate 
monotonicity even for timestamping on the same node due to leap seconds and discrete jumps in 
clocks to correct large time differentials.

Other problems that NTP clocks face include the following. Systems clocks may move at different 
speeds due to hardware problems. Virtualization can wreak havoc on kernel timekeeping. Upstream 



www.orolia.com

NTP servers can lie. NTP is also prone to security attacks. Having your timeservers is good for 
increased security against NTP attacks [13]. Finance sector does not use NIST public source NTP 
servers since men-in-the-middle attack is possible.

Despite these problems, several distributed systems/applications employed NTP in ad hoc 
undisciplined ways and this led to serious problems. One example of this is any distributed database 
with a “last write wins” policy for resolving conflicting writes [9].

2 The rise of better synchronized clocks
The potential benefits of using synchronized clocks in distributed systems have been recognized as 
early as 1991: Barbara Liskov’s “Practical uses of synchronized clocks in distributed systems” paper 
[12] made a strong case for the use of synchronized clocks in improving efficiency/performance 
of distributed systems particularly in the context of concurrency control. On the other hand, in 
the following decades, there was not much progress in the adoption of synchronized clocks in 
distributed systems —except for the straightforward use of local timers for implementing simple 
lease primitives. A major reason for this is likely the loose-synchrony and problems with NTP clocks.

In recent years we see a strong trend toward tight clock synchronization in datacenters and find that 
several distributed systems embrace synchronized clocks. To support tight clock synchronization 
guarantees for Google Spanner [3], Google datacenters have been deploying atomic clocks and 
GPS clocks. Recently, Amazon Web Services (AWS) announced Amazon Time Sync service [19], 
“a time synchronization service delivered over Network Time Protocol (NTP) which uses a fleet 
of redundant satellite-connected and atomic clocks in each region to deliver a highly accurate 
reference clock.”

Here we discuss some key contributors to realizing stronger clock synchronization recently.

2.1 Better clocks

Recently, with the advent of technology, atomic clocks got much cheaper and more common. 
Atomic clocks often use Rubidium, which has a drift of only 1 microsecond a day. OCXO ovenized 
oscillators provide the next best way to have precise clocks in a box: Temperature change has 
the most effect in crystal oscillation rate, and ovenizing the oscillators provides a way to control/
compensate temperature change limiting the clock drift to 25 microsecond a day.



www.orolia.com

2.2 Better communication links

The key to better clock synchronization is to make the communication latencies deterministic so 
that they can be factored out. Using GPS [6], although the communication is done with a satellite 
~12,500 miles miles away, since it is singlehop, it is possible to precisely determine the flight time 
of the signal and remove that for performing clock synchronization. Because of this reason, GPS 
synchronization is much more precise than NTP synchronization, and is able to achieve up to ~10 
nanosecond precision in synchronization.

To reduce the latency and unpredictability of communication links, datacenter communication 
networks have been getting frequent upgrades. As a result, the nondeterminism introduced at the 
routers/switches inside the datacenters are getting smaller. To make the clock synchronization even 
more precise, it is possible to remove the nondeterministic communication delay further by putting 
the timestamp at the sending of the message below MAC layer rather than above the MAC layer. 
The Precision Time Protocol (PTP) [4] enables hardware timestamping and newer implementations 
of NTP introduced support for low-level timestamping.

PTP also incorporates measures to eliminate link delay asymmetry. The time provider sends 
timestamps to the client during a 3-way handshake, so the client can calculate the in-flight-time 
delays between the time-server and itself more precisely. In contrast, in NTP, the time provider is 
oblivious to the client and is stateless with respect to the client.

2.3 Better APIs

Google Spanner paper [3] introduced the Google TrueTime (TT) service and API. TrueTime is a 
global synchronized clock with bounded non-zero error, and the TT API captures and exposes this 
synchronization uncertainty interval of the clock to the users of the service. TT.now() returns a 
TTinterval that is guaranteed to contain the absolute time during which TT.now() was invoked. If 
two intervals do not overlap, then we know calls were definitely ordered in real time. If the intervals 
overlap, we do not know the actual order.

Another example of a new synchronized clock API is hybrid logical clocks (HLC) [10] that integrate 
the general techniques of logical time with synchronized time of physical clocks. HLC utilizes the 
synchronized physical clocks of individual processes and tracks causality information only in the 
uncertainty windows of the synchronized physical clocks. Like TrueTime, HLC does not pretend to 
create a single unified timeline [17] but allows the system designer to build on the best available 
knowledge of time as perceived and communicated across a cluster. Moreover, HLC provides 
survivability and resilience to time-synchronization errors and can make progress, and capture 
causality information even when time synchronization has degraded or is not available.



www.orolia.com

3 Applications of synchronized clocks in distributed systems
With the availability of more tightly synchronized clocks, we saw an increase in the use of clocks 
in distributed systems applications. Here we talk about them under two categories: distributed 
coordination applications and distributed monitoring applications.

3.1 Distributed coordination

Distributed coordination plays an important role in datacenter and cloud computing, particularly 
in leader election, group membership, cluster management, service discovery, resource/access 
management, and consistent replication of the master nodes in services. More specifically, 
distributed coordination finds applications in building large-scale cloud native databases and web 
services, which need to provide consistency guarantees to the face of server and network failures.

Tightly synchronized clocks enable nodes to operate approximately on a common time axis making 
it possible to tradeoff explicit communication with passing of time for achieving coordination.

In finance and e-commerce, synchronized clocks are used for determining transaction order. 
Similarly, in distributed databases, tightly synchronized clocks allow a database to enforce external 
consistency. In Spanner, in order to achieve external consistency, a write-transaction waits out the 
clock uncertainty period before releasing locks on the relevant records and committing. Better 
clock synchronization means shorter uncertainty periods to wait out.

Tightly synchronized clocks also benefit snapshot reads (i.e., reads in the past). By just giving a 
time in the past, the snapshot read can get a consistent cut read of all the variables requested at 
that given time. This is not an easy feat to accomplish in a distributed system without using tightly 
synchronized clocks, as it would require capturing and recording causality relationships across many 
different versions of the variables involved so that a consistent cut can be identified for all the 
variables requested in the snapshot read.

CockroachDB [2] also uses synchronized clocks, but in the absence of access to atomic clocks 
in private datacenters as Google does, CockroachDB uses loosely synchronized clocks and HLC 
to achieve consistent snapshots. Using tightly synchronized clocks for consistent snapshot reads 
across many nodes in a distributed database prevents the need for the nodes to communicate/
coordinate with each other and leads to improved throughput and latency [5].

Finally, on the analytics side, there has been renewed interest in timeseries databases. Recent 
popular timeseries databases include QuasarDB [15], InfluxDB [8], and TimescaleDB [18].



www.orolia.com

3.2 Monitoring of distributed systems

In distributed systems, scalability and availability are critical challenges. For developing highly 
scalable and highly available distributed systems it is important to improve auditability, which 
enables identifying performance bottlenecks, dependencies among events, and latent concurrency 
bugs. In distributed systems, many problems are hard to solve with local information, but becomes 
easy if we can peek at the global state and provide centralized oversight/override.

However, peeking at the global state snapshot of a distributed system is not easy. You need 
to construct this snapshot in a consistent/coherent way from the logs generated locally at the 
nodes participating in the distributed system. By using HLC, in our recent work, we developed 
the Retroscope monitoring framework [1] to help align these logs and perform searches on those 
sorted logs. In other words, Retroscope captures a progression of globally consistent distributed 
states of a system and enables the user to examine these states and search for global predicates. 
While request tracers inspect the system by following the trace of a request, Retroscope performs 
cut monitoring and examines the system at consistent global cuts, observing the state across many 
machines and requests.

Another recent monitoring framework that leverages synchronized clocks at the nodes is the 
Strymon. Similar to Retroscope, Strymon [7] employs cut monitoring and extends that to support 
online critical path analysis of modern dataflow systems like Spark, Flink and TensorFlow.

There are other significant applications of synchronized clocks in distributed event stream processing 
and querying systems, including SCADA systems [16]. Recently synchronized clocks have been used 
for monitoring of electric grid by taking globally consistent snapshots using HLC.

4 Concluding remarks
Tightly synchronized clocks provide a tremendous help for enforcement of consistent views at 
all nodes for the ordering of significant events. This functionality is getting increasingly more 
leveraged for building distributed consensus/coordination and distributed monitoring solutions —
two significant problems in distributed big data processing systems. We provided some examples of 
these applications in this report, and we expect even more applications to emerge in the near future 
as tight clock synchronization and related techniques get prevalent.

Going forward, we need to build principled algorithmic basis and frameworks to enable effective 
use of tightly synchronized clocks in distributed systems. An important principle for design of 
distributed protocols is to separate safety and progress in reasoning. Thus, even with improved time 
synchronization infrastructure, it is best practice to design distributed protocols defensively so that 
they do not rely on clock synchronization “guarantees” to always hold —because under extreme 



www.orolia.com

conditions or adversarial attacks, those assumptions will inevitably be violated. This way even under 
the rare conditions when timing assumptions are violated, the distributed system can still satisfy 
its safety/correctness contract with its users. On the other hand, it is perfectly OK and desirable 
to depend on timing assumptions for providing better progress and performance properties. With 
better clock synchronization such distributed systems will be able to deliver better progress and 
performance results to the users.



www.orolia.com

References
[1] A. Charapko, A. Ailijiang, M. Demirbas, and S. Kulkarni. Retrospective lightweight    

distributed snapshots using loosely synchronized clocks. In Distributed Computing Systems  
 (ICDCS), 2017 IEEE 37th International Conference on, pages 2061–2066. IEEE, 2017.

[2] Cockroachdb, the sql database for global cloud services. https://www. cockroachlabs.com.  
 Accessed on April 25, 2018.

[3] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghemawat, A. Gubarev,  
C. Heiser, P. Hochschild, et al. Spanner: Google’s globally distributed database. ACM   
Transactions on Computer Systems (TOCS), 31(3):8, 2013.

[4] J. Eidson and K. Lee. Ieee 1588 standard for a precision clock synchronization protocol   
for networked measurement and control systems. In Sensors for Industry Conference,   
2002. 2nd ISA/IEEE,  pages  98–105.  Ieee, 2002.

[5] Y. Geng, S. Liu, Z. Yin, A. Naik, B. Prabhakar, M. Rosenblum, and A. Vahdat. Exploiting a   
natural network effect for scalable, fine-grained clock synchronization. In 15th {USENIX}  
Symposium on Networked Systems Design and Implementation ({NSDI} 18), pages 81–94,  
2018.

[6] I. A. Getting. Perspective/navigation-the global positioning system. IEEE spectrum,   
30(12):36–38, 1993.

[7] M. Hoffmann, A. Lattuada, J. Liagouris, V. Kalavri, D. Dimitrova, S. Wicki, Z. Chothia, and T.  
Roscoe. Snailtrail: Generalizing critical paths for online analysis of distributed dataflows.  
In 15th USENIX Symposium on Networked Systems Design and Implementation (NSDI 18),  
pages 95–110, Renton, WA, 2018.

[8] Influxdb,the complete time series platform. https://www.influxdata.com. Accessed on April  
25, 2018.

[9] K. Kingsbury. The trouble with timestamps. https://aphyr.com/ posts/299-the-trouble-  
with-timestamps.  Accessed  on  April   25, 2018.

[10] S. Kulkarni, M. Demirbas, D. Madappa, B. Avva, and M. Leone. Logical physical clocks. In   
Principles of Distributed Systems, pages 17–32. Springer, 2014.

[11] L. Lamport. Time, clocks, and the ordering of events in a distributed system    
Communications of the ACM, 21(7):558–565, July 1978.

[12] B. Liskov. Practical uses of synchronized clocks in distributed systems.     
Distributed Computing, 6(4):211–219, 1993.



www.orolia.com

[13] A. Malhotra, I. E. Cohen, E. Brakke, and S. Goldberg. Attacking the network time protocol. In 
NDSS, 2016.

[14] D. Mills. A brief history of ntp time: Memoirs of an internet timekeeper. ACM SIGCOMM 
Computer Communication Review, 33(2):9–21, 2003.

[15] Quasardb, time series. at  scale.  https://www.quasardb.net.  Accessed on April 25, 2018.

[16] Supervisory control and data acquisition (scada). http://scada.com. Accessed on April 25, 
2018.

[17] J. Sheehy. There is no now. ACM Queue, 13(3):20, 2015.

[18] Timescaledb, sql made scalable.  https://www.timescale.com.  Accessed on April 25, 2018.

[19] Amazon time sync service. https://aws.amazon.com/about-aws /whats-new/2017/11/   
introducing-the-amazon-time-sync-service/. Accessed on April 25, 2018.


