Ecomist Odour Neutraliser Ecomist Systems Limited Version No: 2.6.2.1 Safety Data Sheet according to the Health and Safety at Work (Hazardous Substances) Regulations 2017 Chemwatch Hazard Alert Code: 4 Issue Date: **21/05/2021** Print Date: **21/05/2021** L.GHS.NZL.EN #### SECTION 1 Identification of the substance / mixture and of the company / undertaking | Product Identifier | | | | | |-------------------------------|---------------------------|--|--|--| | Product name | Ecomist Odour Neutraliser | | | | | Chemical Name | Not Applicable | | | | | Synonyms | CNONSOL237 | | | | | Proper shipping name | AEROSOLS | | | | | Other means of identification | CNONSOL237 | | | | #### Relevant identified uses of the substance or mixture and uses advised against | Relevant identified uses | Odour neutraliser | |--------------------------|-------------------| | | | #### Details of the supplier of the safety data sheet | Registered company name | Ecomist Systems Limited | Ecomist Australia Pty Ltd | | | |-------------------------------|---|---------------------------|--|--| | Address | ddress 800 Te Ngae Road BOP New Zealand 25 Hargraves Place, Wetherill Park NSW 2164 Australia | | | | | Telephone | 0800 75 75 78 | 1800 243 500 | | | | Fax 073456019 +61 2 9756 0985 | | +61 2 9756 0985 | | | | Website | www.ecomist.co.nz | www.ecomist.com.au | | | | Email | info@ecomist.co.nz | info@ecomist.com.au | | | #### Emergency telephone number | Association / Organisation | CHEMCALL (0800 CHEMCALL) | CHEMCALL | | | |-----------------------------------|--------------------------|---------------|--|--| | Emergency telephone numbers | 0800 243 622 | 1800 127 406 | | | | Other emergency telephone numbers | Not Available | Not Available | | | # **SECTION 2 Hazards identification** #### Classification of the substance or mixture Considered a Hazardous Substance according to the criteria of the New Zealand Hazardous Substances New Organisms legislation. Classified as Dangerous Goods for transport purposes. ## ChemWatch Hazard Ratings | Classification [1] Flammable Aerosols Category 1, Eye Irritation Category 2 | | | | | |---|---|--|--|--| | Legend: | Legend: 1. Classified by Chemwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/2008 - Anne. | | | | | Determined by Chemwatch using GHS/HSNO criteria | 2.1.2A, 6.4A | | | | #### Label elements Hazard pictogram(s) Signal word Danger Version No: 2.6.2.1 Page 2 of 17 Issue Date: 21/05/2021 Print Date: 21/05/2021 #### **Ecomist Odour Neutraliser** | H222 | Extremely flammable aerosol. | |------|--------------------------------| | H319 | Causes serious eye irritation. | | | | #### Precautionary statement(s) Prevention | P210 | Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. | | | |------|--|--|--| | P211 | o not spray on an open flame or other ignition source. | | | | P251 | Do not pierce or burn, even after use. | | | | P280 | P280 Wear protective gloves/protective clothing/eye protection/face protection. | | | #### Precautionary statement(s) Response | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | |----------------|--| | P337+P313 | If eye irritation persists: Get medical advice/attention. | #### Precautionary statement(s) Storage | | P410+P412 | Protect from sunlight. Do not expose to temperatures exceeding 50 °C/122 °F. | |--|-----------|--| |--|-----------|--| #### Precautionary statement(s) Disposal Not Applicable #### **SECTION 3 Composition / information on ingredients** #### Substances See section below for composition of Mixtures #### **Mixtures** | CAS No | %[weight] | Name | | | | |--|-----------|--|--|--|--| | 64742-48-9. | 15-30 | naphtha petroleum, heavy, hydrotreated | | | | | 64-17-5 | 8-15 | -15 <u>ethanol</u> | | | | | 106-97-8. | 25-50 | butane | | | | | 74-98-6 | 15-30 | propane | | | | | Legend: 1. Classified by Chemwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/2008 - Ant 4. Classification drawn from C&L * EU IOELVs available | | | | | | # **SECTION 4 First aid measures** #### Description of first aid measures | Eye Contact | If aerosols come in contact with the eyes: Immediately hold the eyelids apart and flush the eye continuously for at least 15 minutes with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. Generally not applicable. | |--------------|--| | Skin Contact | If solids or aerosol mists are deposited upon the skin: Flush skin and hair with running water (and soap if available). Remove any adhering solids with industrial skin cleansing cream. DO NOT use solvents. Seek medical attention in the event of irritation. Generally not applicable. | | Inhalation | If aerosols, fumes or combustion products are inhaled: Remove to fresh air. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. If breathing is shallow or has stopped, ensure clear airway and apply resuscitation, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor. Generally not applicable. | | Ingestion | Not considered a normal route of entry. Generally not applicable. Avoid giving milk or oils. Avoid giving alcohol. | #### Indication of any immediate medical attention and special treatment needed For petroleum distillates - In case of ingestion, gastric lavage with activated charcoal can be used promptly to prevent absorption decontamination (induced emesis or lavage) is controversial and should be considered on the merits of each individual case; of course the usual precautions of an endotracheal tube should be considered prior to lavage, to prevent - Individuals intoxicated by petroleum distillates should be hospitalized immediately, with acute and continuing attention to neurologic and cardiopulmonary function. - Positive pressure ventilation may be necessary. - Acute central nervous system signs and symptoms may result from large ingestions of aspiration-induced hypoxia. Version No: 2.6.2.1 Page 3 of 17 Issue Date: 21/05/2021 #### **Ecomist Odour Neutraliser** Print Date: 21/05/2021 - After the initial episode, individuals should be followed for changes in blood variables and the delayed appearance of pulmonary oedema and chemical pneumonitis. Such patients should be followed for several days or weeks for delayed effects, including bone marrow toxicity, hepatic and renal impairment. Individuals with chronic pulmonary disease will be more seriously impaired, and recovery from inhalation exposure may be complicated. - Gastrointestinal symptoms are usually minor and pathological changes of the liver and kidneys are reported to be uncommon in acute intoxications. - Chlorinated and non-chlorinated hydrocarbons may sensitize the heart to epinephrine and other circulating catecholamines so that arrhythmias may occur. Careful consideration of this potential adverse effect should precede administration of epinephrine or other cardiac stimulants and the selection of bronchodilators. BP America Product Safety & Toxicology Department Treat symptomatically. #### **SECTION 5 Firefighting measures** #### **Extinguishing media** #### SMALL FIRE: Water spray, dry chemical or CO2 #### LARGE FIRE: Water spray or fog. #### Special hazards arising from the substrate or mixture Fire Fighting Fire Incompatibility Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result #### Advice for firefighters - Alert Fire Brigade and tell them location and nature of hazard. - May be violently or explosively reactive. - Wear breathing apparatus plus protective gloves. - ▶ Prevent, by any means available, spillage from entering drains or water course. - If safe, switch off electrical equipment until vapour fire hazard removed. - ▶ Use water delivered as a fine spray to control fire and cool adjacent area. - DO NOT approach containers suspected to be hot. - Cool fire
exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. - ▶ Equipment should be thoroughly decontaminated after use. Slight hazard when exposed to heat, flame and oxidisers. #### Liquid and vapour are highly flammable. - Severe fire hazard when exposed to heat or flame. - Vapour forms an explosive mixture with air. - Severe explosion hazard, in the form of vapour, when exposed to flame or spark. - Vapour may travel a considerable distance to source of ignition. - Heating may cause expansion or decomposition with violent container rupture. - Aerosol cans may explode on exposure to naked flames. - Rupturing containers may rocket and scatter burning materials. - Hazards may not be restricted to pressure effects. - May emit acrid, poisonous or corrosive fumes. Fire/Explosion Hazard - On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include: carbon monoxide (CO) Combustible. Will burn if ignited. carbon dioxide (CO2) other pyrolysis products typical of burning organic material. Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions. Articles and manufactured articles may constitute a fire hazard where polymers form their outer layers or where combustible packaging remains in place. Certain substances, found throughout their construction, may degrade or become volatile when heated to high temperatures. This may create a secondary hazard. #### **SECTION 6 Accidental release measures** #### Personal precautions, protective equipment and emergency procedures See section 8 #### **Environmental precautions** See section 12 #### Methods and material for containment and cleaning up Minor Spills **Major Spills** Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Wear protective clothing, impervious gloves and safety glasses Shut off all possible sources of ignition and increase ventilation. ▶ Wipe up. - If safe, damaged cans should be placed in a container outdoors, away from all ignition sources, until pressure has dissipated. - Undamaged cans should be gathered and stowed safely. #### Clear area of personnel and move upwind. #### Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. - Prevent, by all means available, spillage from entering drains or water courses. Consider evacuation (or protect in place). - No smoking, naked lights or ignition sources. - Increase ventilation. Version No: 2.6.2.1 Page 4 of 17 Issue Date: 21/05/2021 #### **Ecomist Odour Neutraliser** Print Date: 21/05/2021 - Stop leak if safe to do so. - Water spray or fog may be used to disperse / absorb vapour. - Contain or absorb spill with sand, earth or vermiculite. - Collect recoverable product into labelled containers for recycling. - Collect solid residues and seal in labelled drums for disposal - Wash area and prevent runoff into drains - After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. - If contamination of drains or waterways occurs, advise emergency services. - Clear area of all unprotected personnel and move upwind. - Alert Emergency Authority and advise them of the location and nature of hazard. - May be violently or explosively reactive. - Wear full body clothing with breathing apparatus. - Prevent by any means available, spillage from entering drains and water-courses. - Consider evacuation. - Shut off all possible sources of ignition and increase ventilation. - No smoking or naked lights within area. - Use extreme caution to prevent violent reaction. - Stop leak only if safe to so do. - Water spray or fog may be used to disperse vapour. - DO NOT enter confined space where gas may have collected. - Keep area clear until gas has dispersed. - Remove leaking cylinders to a safe place. - Fit vent pipes. Release pressure under safe, controlled conditions - Burn issuing gas at vent pipes. - DO NOT exert excessive pressure on valve; DO NOT attempt to operate damaged valve. - Clear area of personnel and move upwind. - Alert Fire Brigade and tell them location and nature of hazard. - May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. - Prevent, by any means available, spillage from entering drains or water courses - No smoking, naked lights or ignition sources. - Increase ventilation. - Stop leak if safe to do so. - Water spray or fog may be used to disperse / absorb vapour. - Absorb or cover spill with sand, earth, inert materials or vermiculite. - If safe, damaged cans should be placed in a container outdoors, away from ignition sources, until pressure has dissipated. - Undamaged cans should be gathered and stowed safely. - Collect residues and seal in labelled drums for disposal. - Minor hazard. - Clear area of personnel. - Alert Fire Brigade and tell them location and nature of hazard. - Wear physical protective gloves e.g. Leather. - Contain spill/secure load if safe to do so. - ▶ Bundle/collect recoverable product and label for recycling. - Collect remaining product and place in appropriate containers for disposal. - Clean up/sweep up area. - Water may be required. Personal Protective Equipment advice is contained in Section 8 of the SDS. # SECTION 7 Handling and storage #### Precautions for safe handling The conductivity of this material may make it a static accumulator., A liquid is typically considered nonconductive if its conductivity is below 100 pS/m and is considered semi-conductive if its conductivity is below 10 000 pS/m., Whether a liquid is nonconductive or semi-conductive, the precautions are the same., A number of factors, for example liquid temperature, presence of contaminants, and anti-static additives can greatly influence the conductivity of a liquid. Natural gases contain a contaminant, radon-222, a naturally occurring radioactive gas. During subsequent processing, radon tends to concentrate in liquefied petroleum streams and in product streams having similar boiling points. Industry experience indicates that the commercial product may contain small amounts of radon-222 and its radioactive decay products (radon daughters). The actual concentration of radon-222 and radioactive daughters in process equipment (IE lines, filters, pumps and reactor units) may reach significant levels and produce potentially damaging levels of gamma radiation. A potential external radiation hazard exists at or near any pipe, valve or vessel containing a radon enriched stream or containing internal deposits of radioactive material. Field studies, however, have not shown that conditions exist that expose the worker to cumulative exposures in excess of general population limits. Equipment containing gamma-emitting decay products should be presumed to be internally contaminated with alpha-emitting decay products which may be hazardous if inhaled or ingested. During maintenance operations that require the opening of contaminated process equipment, the flow of gas should be stopped and a four hour delay enforced to allow gamma-radiation to drop to background levels. Protective equipment (including high efficiency particulate respirators (P3) suitable for radionucleotides or supplied air) should be worn by personnel entering a vessel or working on contaminated process equipment to prevent skin contamination or inhalation of any residue containing alpha-radiation. Airborne contamination may be minimised by handling scale and/or contaminated materials in a wet state. [TEXACO] #### Safe handling - Avoid all personal contact, including inhalation. - Wear protective clothing when risk of exposure occurs. - Use in a well-ventilated area - Prevent concentration in hollows and sumps. - DO NOT enter confined spaces until atmosphere has been checked. - Avoid smoking, naked lights or ignition sources. - Avoid contact with incompatible materials. - When handling, DO NOT eat, drink or smoke. - DO NOT incinerate or puncture aerosol cans. - DO NOT spray directly on humans, exposed food or food utensils. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. Version No: 2.6.2.1 Page 5 of 17 Issue Date: 21/05/2021 Print Date: 21/05/2021 **Ecomist Odour Neutraliser** - Use good occupational work practice. - Dbserve manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. - ▶ Keep dry to avoid corrosion of cans. Corrosion may result in container perforation and internal pressure may eject contents of can ▶ Store in original containers in approved flammable liquid storage area. - DO NOT store in pits, depressions, basements or areas where vapours may be trapped. - ▶ No smoking, naked lights, heat or ignition sources - Keep containers securely sealed. Contents under pressure. - Store away from incompatible materials. - Store in a cool, dry, well ventilated area. Other information - Avoid storage at temperatures higher than 40 deg C. - Store in an upright position. - Protect containers against physical damage. - Check regularly for spills and leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. - Store away from incompatible materials #### Conditions for safe storage, including any incompatibilities #### Suitable container Generally packaging as originally supplied with the article or manufactured item is sufficient to protect against physical hazards. If repackaging is required ensure the article is intact and does not show signs of wear. As far as is practicably possible, reuse the original packaging or something providing a similar level of protection to both the article and the handler. - ▶ Check that containers are clearly
labelled. - Avoid oxidising agents, acids, acid chlorides, acid anhydrides, chloroformates. Low molecular weight alkanes: - May react violently with strong oxidisers, chlorine, chlorine dioxide, dioxygenyl tetrafluoroborate. - May react with oxidising materials, nickel carbonyl in the presence of oxygen, heat. - Are incompatible with nitronium tetrafluoroborate(1-), halogens and interhalogens - may generate electrostatic charges, due to low conductivity, on flow or agitation. - Avoid flame and ignition sources Redox reactions of alkanes, in particular with oxygen and the halogens, are possible as the carbon atoms are in a strongly reduced condition. Reaction with oxygen (if present in sufficient quantity to satisfy the reaction stoichiometry) leads to combustion without any smoke, producing carbon dioxide and water. Free radical halogenation reactions occur with halogens, leading to the production of haloalkanes. In addition, alkanes have been shown to interact with, and bind to, certain transition metal complexes Interaction between chlorine and ethane over activated carbon at 350 deg C has caused explosions, but added carbon dioxide reduces the risk. The violent interaction of liquid chlorine injected into ethane at 80 deg C/10 bar becomes very violent if ethylene is also present A mixture prepared at -196 deg C with either methane or ethane exploded when the temp was raised to -78 deg C. Addition of nickel carbonyl to an n-butane-oxygen mixture causes an explosion at 20-40 deg C. Alkanes will react with steam in the presence of a nickel catalyst to give hydrogen. # Storage incompatibility - reacts violently with strong oxidisers - reacts with acetylene, halogens and nitrous oxides - is incompatible with chlorine dioxide, conc. nitric acid and some plastics - ▶ may generate electrostatic charges, due to low conductivity, in flow or when agitated these may ignite the vapour. Segregate from nickel carbonyl in the presence of oxygen, heat (20-40 C) #### Propane: Butane/ isobutane - reacts violently with strong oxidisers, barium peroxide, chlorine dioxide, dichlorine oxide, fluorine etc. - liquid attacks some plastics, rubber and coatings - may accumulate static charges which may ignite its vapours - Compressed gases may contain a large amount of kinetic energy over and above that potentially available from the energy of reaction produced by the gas in chemical reaction with other substances #### SECTION 8 Exposure controls / personal protection #### Control parameters #### Occupational Exposure Limits (OEL) #### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |---|--|-------------------------|--------------------------|------------------|------------------|--| | New Zealand Workplace
Exposure Standards (WES) | naphtha petroleum, heavy, hydrotreated | Oil mist, mineral | 5 mg/m3 | 10 mg/m3 | Not
Available | om-Sampled by a method that does not collect vapour. | | New Zealand Workplace
Exposure Standards (WES) | ethanol | Ethyl alcohol (Ethanol) | 1000 ppm / 1880
mg/m3 | Not
Available | Not
Available | Not Available | | New Zealand Workplace
Exposure Standards (WES) | butane | Butane | 800 ppm / 1900
mg/m3 | Not
Available | Not
Available | Not Available | | New Zealand Workplace
Exposure Standards (WES) | propane | Propane | Not Available | Not
Available | Not
Available | Simple asphyxiant - may present an explosion hazard | #### **Emergency Limits** | Ingredient | TEEL-1 | TEEL-2 | TEEL-3 | |--|---------------|---------------|---------------| | naphtha petroleum, heavy, hydrotreated | 350 mg/m3 | 1,800 mg/m3 | 40,000 mg/m3 | | ethanol | Not Available | Not Available | 15000* ppm | | butane | Not Available | Not Available | Not Available | | propane | Not Available | Not Available | Not Available | Version No: 2.6.2.1 Page 6 of 17 Issue Date: 21/05/2021 Print Date: 21/05/2021 #### **Ecomist Odour Neutraliser** **Original IDLH** Revised IDLH Ingredient naphtha petroleum, heavy, 2,500 mg/m3 Not Available hydrotreated 3.300 ppm Not Available ethanol Not Available 1,600 ppm butane 2,100 ppm Not Available propane #### MATERIAL DATA #### For ethanol: Odour Threshold Value: 49-716 ppm (detection), 101 ppm (recognition) Eye and respiratory tract irritation do not appear to occur at exposure levels of less than 5000 ppm and the TLV-TWA is thought to provide an adequate margin of safety against such effects. Experiments in man show that inhalation of 1000 ppm caused slight symptoms of poisoning and 5000 ppm caused strong stupor and morbid sleepiness. Subjects exposed to 5000 ppm to 10000 ppm experienced smarting of the eyes and nose and coughing. Symptoms disappeared within minutes. Inhalation also causes local irritating effects to the eyes and upper respiratory tract, headaches, sensation of heat intraocular tension, stupor, fatigue and a need to sleep. At 15000 ppm there was continuous lachrymation and coughing. #### For butane: Odour Threshold Value: 2591 ppm (recognition) Butane in common with other homologues in the straight chain saturated aliphatic hydrocarbon series is not characterised by its toxicity but by its narcosis-inducing effects at high concentrations. The TLV is based on analogy with pentane by comparing their lower explosive limits in air. It is concluded that this limit will protect workers against the significant risk of drowsiness and other narcotic effects Odour Safety Factor(OSF) OSF=0.22 (n-BUTANE) #### For propane Odour Safety Factor(OSF) OSF=0.16 (PROPANE) NOTE P: The classification as a carcinogen need not apply if it can be shown that the substance contains less than 0.01% w/w benzene (EINECS No 200-753-7). Note E shall also apply when the substance is classified as a carcinogen. This note applies only to certain complex oil-derived substances in Annex VI. European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP #### **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. - · Employees exposed to confirmed human carcinogens should be authorized to do so by the employer, and work in a regulated area. - Work should be undertaken in an isolated system such as a "glove-box". Employees should wash their hands and arms upon completion of the assigned task and before engaging in other activities not associated with the isolated system. - Within regulated areas, the carcinogen should be stored in sealed containers, or enclosed in a closed system, including piping systems, with any sample ports or openings closed while the carcinogens are contained within. - Open-vessel systems are prohibited. Appropriate engineering - Each operation should be provided with continuous local exhaust ventilation so that air movement is always from ordinary work areas to the operation. - Exhaust air should not be discharged to regulated areas, non-regulated areas or the external environment unless decontaminated. Clean make-up air should be introduced in sufficient volume to maintain correct operation of the local exhaust system. - For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood. Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood. - Except for outdoor systems, regulated areas should be maintained under negative pressure (with respect to non-regulated areas). - Local exhaust ventilation requires make-up air be supplied in equal volumes to replaced air. - Laboratory hoods must be designed and maintained so as to draw air inward at an average linear face velocity of 0.76 m/sec with a minimum of 0.64 m/sec. Design and construction of the fume hood requires that insertion of any portion of the employees body, other than hands and arms, be disallowed. Articles or manufactured items, in their original condition, generally don't require engineering controls during handling or in normal use. Exceptions may arise following extensive use and subsequent wear, during recycling or disposal operations where substances, found in the article, may be released to the environment. #### Personal protection controls - ▶ Safety glasses with side shields. - Chemical goggles. - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure,
begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] - Close fitting gas tight goggles #### DO NOT wear contact lense Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove # Eye and face protection Version No: 2.6.2.1 Page 7 of 17 Issue Date: 21/05/2021 Print Date: 21/05/2021 Print Date: 21/05/2021 #### **Ecomist Odour Neutraliser** contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent1 No special equipment required due to the physical form of the product. Skin protection See Hand protection below ▶ No special equipment needed when handling small quantities. OTHERWISE: For potentially moderate exposures: Hands/feet protection Wear general protective gloves, eg. light weight rubber gloves. For potentially heavy exposures: Wear chemical protective gloves, eg. PVC. and safety footwear. No special equipment required due to the physical form of the product **Body protection** See Other protection below F Employees working with confirmed human carcinogens should be provided with, and be required to wear, clean, full body protective clothing (smocks, coveralls, or long-sleeved shirt and pants), shoe covers and gloves prior to entering the regulated area. [AS/NZS ISO 6529:2006 or Employees engaged in handling operations involving carcinogens should be provided with, and required to wear and use half-face filter-type respirators with filters for dusts, mists and fumes, or air purifying canisters or cartridges. A respirator affording higher levels of protection may be substituted. [AS/NZS 1715 or national equivalent] Emergency deluge showers and eyewash fountains, supplied with potable water, should be located near, within sight of, and on the same level with locations where direct exposure is likely. Prior to each exit from an area containing confirmed human carcinogens, employees should be required to remove and leave protective clothing and equipment at the point of exit and at the last exit of the day, to place used clothing and equipment in impervious containers at the point of exit for purposes of decontamination or disposal. The contents of such impervious containers must be identified with suitable labels. For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood. Other protection Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood. Fig. The clothing worn by process operators insulated from earth may develop static charges far higher (up to 100 times) than the minimum ignition energies for various flammable gas-air mixtures. This holds true for a wide range of clothing materials including cotton. Avoid dangerous levels of charge by ensuring a low resistivity of the surface material worn outermost. BRETHERICK: Handbook of Reactive Chemical Hazards. No special equipment needed when handling small quantities. OTHERWISE: #### Recommended material(s) #### **GLOVE SELECTION INDEX** Glove selection is based on a modified presentation of the: "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the $\ computer \ generated$ selection: Overalls. Skin cleansing cream.Eyewash unit. Do not spray on hot surfaces. No special equipment required due to the physical form of the product. **Ecomist Odour Neutraliser** | Material | СРІ | |------------------|-----| | BUTYL | A | | NEOPRENE | A | | NITRILE | A | | NITRILE+PVC | A | | PE/EVAL/PE | A | | PVC | В | | NATURAL RUBBER | С | | NATURAL+NEOPRENE | С | ^{*} CPI - Chemwatch Performance Index A: Best Selection B: Satisfactory; may degrade after 4 hours continuous immersion C: Poor to Dangerous Choice for other than short term immersion **NOTE**: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - * Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. # Respiratory protection Respiratory protection not normally required due to the physical form of the product. Generally not applicable. Aerosols, in common with most vapours/ mists, should never be used in confined spaces without adequate ventilation. Aerosols, containing agents designed to enhance or mask smell, have triggered allergic reactions in predisposed individuals. ## **SECTION 9 Physical and chemical properties** #### Information on basic physical and chemical properties #### Appearance Packed as liquid under pressure and remains liquid only under pressure. Sudden release of pressure or leakage may result in rapid vapourisation with generation of a large volume of highly flammable / explosive gas. Clear colourless flammable liquid with a mild odour; not miscible with water. Version No: 2.6.2.1 Page 8 of 17 Issue Date: 21/05/2021 Print Date: 21/05/2021 Print Date: 21/05/2021 #### **Ecomist Odour Neutraliser** | Physical state | article | Relative density (Water = 1) | 0.60-0.63 | |--|------------------------|---|----------------| | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | 431 | | pH (as supplied) | Not Applicable | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | -81 | Taste | Not Available | | Evaporation rate | Not Available BuAC = 1 | Explosive properties | Not Available | | Flammability | HIGHLY FLAMMABLE. | Oxidising properties | Not Available | | Upper Explosive Limit (%) | 10 | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | 1.5 | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water | Immiscible | pH as a solution (1%) | Not Applicable | | Vapour density (Air = 1) | >1 | VOC g/L | Not Available | #### **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Elevated temperatures. Presence of open flame. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | #### **SECTION 11 Toxicological information** #### Information on toxicological effects The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. The most common signs of inhalation overexposure to ethanol, in animals, include ataxia, incoordination and drowsiness for those surviving narcosis. The narcotic dose for rats, after 2 hours of exposure, is 19260 ppm. No health effects were seen in humans exposed at 1,000 ppm isobutane for up to 8 hours or 500 ppm for 8 hours/day for 10 days. Isobutane can have anaesthetic and asphyxiant effects at high concentrations, well above the lower explosion limit of 1.8% (18,000 ppm). Butane is a simple asphyxiant and is mildly anaesthetic at high concentrations (20-25%). 10000 ppm for 10 minutes causes drowsiness. Narcotic effects may be accompanied by exhilaration, dizziness, headache, nausea, confusion, incoordination and unconsciousness in severe cases The paraffin gases C1-4 are practically nontoxic below the lower flammability limit, 18,000 to 50,000 ppm; above this, low to moderate incidental effects such as CNS depression and irritation occur, but are completely reversible upon cessation of the exposure. The vapour is discomforting WARNING:Intentional misuse by concentrating/inhaling contents may be lethal. Some aliphatic hydrocarbons produce axonal neuropathies. Isoparaffinic hydrocarbons produce injury to the kidneys of male rats. When albino rats were exposed to isoparaffins at 21.4 mg/l for 4 hours, all animals experienced weakness, tremors, salivation, mild to moderate convulsions, chromodacryorrhoea and ataxia within the first 24 hours. Symptoms disappeared after 24 hours. #### Inhaled Several studies have evaluated sensory irritation in laboratory
animals or odor or sensory response in humans. When evaluated by a standard procedure to assess upper airway irritation, isoparaffins did not produce sensory irritation in mice exposed to up to 400 ppm isoparaffin in air. Human volunteers were exposed for six hours to 100 ppm isoparaffin. The subjects were given a self-administered questionnaire to evaluate symptoms, which included dryness of the mucous membranes, loss of appetite, nausea, vomiting, diarrhea, fatigue, headache, dizziness, feeling of inebriation, visual disturbances, tremor, muscular weakness, impairment of coordination or paresthesia. No symptoms associated with solvent exposure were observed. With a human expert panel, odour from liquid imaging copier emissions became weakly discernible at approximately 50 ppm. Numerous long-term exposures have been conducted in animals with only one major finding observed. Renal tubular damage has been found in kidneys of male rats upon repeated exposures to isoparaffins. It does not occur in mice or in female rats. This male rat nephropathy has been observed with a number of hydrocarbons, including wholly vaporized unleaded gasoline. The phenomenon has been attributed to reversible binding of hydrocarbon to alpha2-globulin. Since humans do not synthesize alpha2-globulin or a similar protein, the finding is not considered to be of biological significance to man. No clinically significant renal abnormalities have been found in refinery workers exposed to hydrocarbons. When evaluated for developmental toxicity in rats, isoparaffins were neither embryotoxic nor teratogenic. Isoparaffins were consistently negative on standard bacterial genotoxicity assays. They were also non-genotoxic in *in vivo* mammalian testing for somatic or germ cell mutations (mouse micronucleus test and rat dominant lethal assay, respectively). Mullin et al: Jnl Applied Toxicology 10, pp 136-142, 2006 Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system depression - characterised by headache and dizziness, increased reaction time, fatigue and loss of co-ordination Version No: 2.6.2.1 Page 9 of 17 Issue Date: 21/05/2021 Print Date: 21/05/2021 #### **Ecomist Odour Neutraliser** Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. Material is highly volatile and may quickly form a concentrated atmosphere in confined or unventilated areas. The vapour may displace and replace air in breathing zone, acting as a simple asphyxiant. This may happen with little warning of overexposure. Symptoms of asphyxia (suffocation) may include headache, dizziness, shortness of breath, muscular weakness, drowsiness and ringing in the ears. If the asphyxia is allowed to progress, there may be nausea and vomiting, further physical weakness and unconsciousness and, finally, convulsions, coma and death. Significant concentrations of the non-toxic gas reduce the oxygen level in the air. As the amount of oxygen is reduced from 21 to 14 volume %, the pulse rate accelerates and the rate and volume of breathing increase. The ability to maintain attention and think clearly is diminished and muscular coordination is somewhat disturbed. As oxygen decreases from 14-10% judgement becomes faulty; severe injuries may cause no pain. Muscular exertion leads to rapid fatigue. Further reduction to 6% may produce nausea and vomiting and the ability to move may be lost. Permanent brain damage may result even after resuscitation at exposures to this lower oxygen level. Below 6% breathing is in gasps and convulsions may occur. Inhalation of a mixture containing no oxygen may result in unconsciousness from the first breath and death will follow in a few minutes. Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual. Ingestion of ethanol may produce nausea, vomiting, gastrointestinal bleeding, abdominal pain and diarrhoea. Systemic effects: | Blood concentration: | Effects: | | |----------------------|--|--| | <1.5 g/l | Mild: Impaired visual acuity, coordination and reaction time, emotional lability | | | 1.5-3.0 g/l | Moderate: Slurred speech, confusion, ataxia, emotional lability, perceptual and sensation disturbances possible blackout spells, and incoordination with impaired objective performance in standardised tests. Possible diplopia, flushing, tachycardia, sweating and incontinence. Bradypnoea may occur early and tachypnoea may develop in cases of metabollic acidosis, hypoglycaemia and hypokalaemia. CNS depression may progress to coma. | | | 3-5 g/l | Severe: Cold clammy skin, hypothermia and hypotension. Atrial fibrillation and atrioventricular block have been reported. Respiratory depression may occur, respiratory failure may follow serious intoxication, aspiration of vomitus may result in pneumonitis and pulmonary oedema. Convulsions due to severe hypoglycaemia may also occur Acute hepatitis may develop. | | #### Ingestion Not normally a hazard due to physical form of product. Considered an unlikely route of entry in commercial/industrial environments Many aliphatic hydrocarbons create a burning sensation because they are irritating to the GI mucosa. Vomiting has been reported in up to one third of all hydrocarbon exposures. While most aliphatic hydrocarbons have little GI absorption, aspiration frequently occurs, either initially or in a semi-delayed fashion as the patient coughs or vomits, thereby resulting in pulmonary effects. Once aspirated, the hydrocarbons can create a Rats given isoparaffinic hydrocarbons - isoalkanes- (after 18-24 hours fasting) showed lethargy and/or general weakness, ataxia and diarrhoea. Symptoms disappeared within 24-28 hours. Ingestion of petroleum hydrocarbons may produce irritation of the pharynx, oesophagus, stomach and small intestine with oedema and mucosal ulceration resulting; symptoms include a burning sensation in the mouth and throat. Large amounts may produce narcosis with nausea and vomiting, weakness or dizziness, slow and shallow respiration, swelling of the abdomen, unconsciousness and convulsions. Myocardial injury may produce arrhythmias, ventricular fibrillation and electrocardiographic changes. Central nervous system depression may also occur. Light aromatic hydrocarbons produce a warm, sharp, tingling sensation on contact with taste buds and may anaesthetise the tongue. Aspiration into the lungs may produce coughing, gagging and a chemical pneumonitis with pulmonary oedema and haemorrhage. Accidental ingestion of the material may be damaging to the health of the individual. Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions. Limited evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four Repeated exposure may cause skin cracking, flaking or drying following normal handling and use. # hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. Dermally, isoparaffins have produced slight to moderate irritation in animals and humans under occluded patch conditions where evaporation cannot freely occur. However, they are not irritating in non-occluded tests, which are a more realistic simulation of human exposure. They have not been found to be sensitisers in guinea pig or human patch testing. However, occasional rare idiosyncratic sensitisation reactions in humans have been reported. Spray mist may produce discomfort Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. Skin contact with the material may damage the health of the individual; systemic effects may result following absorption. **Skin Contact** Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. Direct contact of the eye with
ethanol may cause immediate stinging and burning with reflex closure of the lid and tearing, transient injury of the corneal epithelium and hyperaemia of the conjunctiva. Foreign-body type discomfort may persist for up to 2 days but healing is usually spontaneous and complete. Instillation of isoparaffins into rabbit eyes produces only slight irritation. Direct contact with the eye may not cause irritation because of the extreme volatility of the gas; however concentrated atmospheres may produce irritation after brief exposures. Continued... #### Eye Version No: **2.6.2.1** Page **10** of **17** Issue Date: **21/05/2021** #### **Ecomist Odour Neutraliser** Print Date: 21/05/2021 Petroleum hydrocarbons may produce pain after direct contact with the eyes. Slight, but transient disturbances of the corneal epithelium may also result. The aromatic fraction may produce irritation and lachrymation. On the basis of epidemiological data, the material is regarded as carcinogenic to humans. There is sufficient data to establish a causal association between human exposure to the material and the development of cancer. Toxic: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed. Serious damage (clear functional disturbance or morphological change which may have toxicological significance) is likely to be caused by repeated or prolonged exposure. As a rule the material produces, or contains a substance which produces severe lesions. Such damage may become apparent following direct application in subchronic (90 day) toxicity studies or following sub-acute (28 day) or chronic (two-year) toxicity tests. Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following. Long-term exposure to ethanol may result in progressive liver damage with fibrosis or may exacerbate liver injury caused by other agents. Repeated ingestion of ethanol by pregnant women may adversely affect the central nervous system of the developing foetus, producing effects collectively described as foetal alcohol syndrome. These include mental and physical retardation, learning disturbances, motor and language deficiency, behavioural disorders and reduced head size. Consumption of ethanol (in alcoholic beverages) may be linked to the development of Type I hypersensitivities in a small number of individuals. Symptoms, which may appear immediately after consumption, include conjunctivitis, angioedema, dyspnoea, and urticarial rashes. The causative agent may be acetic acid, a metabolite (1). (1) Boehncke W.H., & H.Gall, Clinical & Experimental Allergy, 26, 1089-1091, 1996 Repeated or prolonged exposure to mixed hydrocarbons may produce narcosis with dizziness, weakness, irritability, concentration and/or memory loss, tremor in the fingers and tongue, vertigo, olfactory disorders, constriction of visual field, paraesthesias of the extremities, weight loss and anaemia and degenerative changes in the liver and kidney. Chronic exposure by petroleum workers, to the lighter hydrocarbons, has been associated with visual disturbances, damage to the central nervous system, peripheral neuropathies (including numbness and paraesthesias), psychological and neurophysiological deficits, bone marrow toxicities (including hypoplasia possibly due to benzene) and hepatic and renal involvement. Chronic dermal exposure to petroleum hydrocarbons may result in defatting which produces localised dermatoses. Surface cracking and erosion may also increase susceptibility to infection by microorganisms. One epidemiological study of petroleum refinery workers has reported elevations in standard mortality ratios for skin cancer along with a dose-response relationship indicating an association between routine workplace exposure to petroleum or one of its constituents and skin cancer, particularly melanoma. Other studies have been unable to confirm this finding. #### Chronic Hydrocarbon solvents are liquid hydrocarbon fractions derived from petroleum processing streams, containing only carbon and hydrogen atoms, with carbon numbers ranging from approximately C5-C20 and boiling between approximately 35-370 deg C. Many of the hydrocarbon solvents have complex and variable compositions with constituents of 4 types, alkanes (normal paraffins, isoparaffins, and cycloparaffins) and aromatics (primarily alkylated one- and two-ring species). Despite the compositional complexity, most hydrocarbon solvent constituents have similar toxicological properties, and the overall toxicological hazards can be characterized in generic terms. Hydrocarbon solvents can cause chemical pneumonitis if aspirated into the lung, and those that are volatile can cause acute CNS effects and/or ocular and respiratory irritation at exposure levels exceeding occupational recommendations. Otherwise, there are few toxicologically important effects. The exceptions, n-hexane and naphthalene, have unique toxicological properties #### Animal studies: No deaths or treatment related signs of toxicity were observed in rats exposed to light alkylate naphtha (paraffinic hydrocarbons) at concentrations of 668, 2220 and 6646 ppm for 6 hrs/day, 5 days/wk for 13 weeks. Increased liver weights and kidney toxicity (male rats) was observed in high dose animals. Exposure to pregnant rats at concentrations of 137, 3425 and 6850 ppm did not adversely affect reproduction or cause maternal or foetal toxicity. Lifetime skin painting studies in mice with similar naphthas have shown weak or no carcinogenic activity following prolonged and repeated exposure. Similar naphthas/distillates, when tested at nonirritating dose levels, did not show any significant carcinogenic activity indicating that this tumorigenic response is likely related to chronic irritation and not to dose. The mutagenic potential of naphthas has been reported to be largely negative in a variety of mutagenicity tests. The exact relationship between these results and human health is not known. Some components of this product have been shown to produce a species specific, sex hormonal dependent kidney lesion in male rats from repeated oral or inhalation exposure. Subsequent research has shown that the kidney damage develops via the formation of a alpha-2u-globulin, a mechanism unique to the male rat. Humans do not form alpha-2u-globulin, therefore, the kidney effects resulting from this mechanism are not relevant in human. Principal route of occupational exposure to the gas is by inhalation. Repeated application of mildly hydrotreated oils (principally paraffinic), to mouse skin, induced skin tumours; no tumours were induced with severely hydrotreated oils. Steam-cracked residues produced an increased incidence of skin tumours after repeated applications to the skin of mice. | Ecomist Odour Neutraliser | TOXICITY | IRRITATION | |---------------------------|---|--| | Ecomist Odour Neutraliser | Not Available | Not Available | | | TOXICITY | IRRITATION | | naphtha petroleum, heavy, | Dermal (rabbit) LD50: >1900 mg/kg ^[1] | Eye: no adverse effect observed (not irritating) ^[1] | | hydrotreated | Inhalation(Rat) LC50; >4.42 mg/L4h ^[1] | Skin: adverse effect observed (irritating) ^[1] | | | Oral(Rat) LD50; >4500 mg/kg ^[1] | | | | TOXICITY | IRRITATION | | | Dermal (rabbit) LD50: 17100 mg/kg ^[1] | Eye (rabbit): 500 mg SEVERE | | | Inhalation(Mouse) LC50; 39 mg/L4h ^[2] | Eye (rabbit):100mg/24hr-moderate | | ethanol | Oral(Rat) LD50; >7692 mg/kg ^[1] | Eye: adverse effect observed (irritating) ^[1] | | | | Skin (rabbit):20 mg/24hr-moderate | | | | Skin (rabbit):400 mg (open)-mild | | | | Skin: no adverse effect observed (not irritating) ^[1] | | | TOXICITY | IRRITATION | | butane | Inhalation(Rat) LC50; 658 mg/L4h ^[2] | Not Available | | | TOXICITY | IRRITATION | | propane | Inhalation(Rat) LC50; >13023 ppm4h ^[1] | Not Available | Version No: **2.6.2.1** Page **11** of **17** Issue Date: **21/05/2021** #### **Ecomist Odour Neutraliser** Print Date: 21/05/2021 #### Legend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances #### for petroleum: Altered mental state, drowsiness, peripheral motor neuropathy, irreversible brain damage (so-called Petrol Sniffer's Encephalopathy), delirium, seizures, and sudden death have been reported from repeated overexposure to some hydrocarbon solvents, naphthas, and gasoline This product may contain benzene which is known to cause acute myeloid leukaemia and n-hexane which has been shown to metabolize to compounds which are neuropathic. This product contains toluene. There are indications from animal studies that prolonged exposure to high concentrations of toluene may lead to hearing loss. This product contains ethyl benzene and naphthalene from which there is evidence of tumours in rodents Carcinogenicity: Inhalation exposure to mice causes liver tumours, which are not considered relevant to humans. Inhalation exposure to rats causes kidney tumours which are not considered relevant to humans. **Mutagenicity:** There is a large database of mutagenicity studies on gasoline and gasoline blending streams, which use a wide variety of endpoints and give predominantly negative results. All in vivo studies in animals and recent studies in exposed humans (e.g. petrol service station attendants) have shown negative results in mutagenicity assays. **Reproductive Toxicity:** Repeated exposure of pregnant rats to high concentrations of toluene (around or exceeding 1000 ppm) can cause developmental effects, such as lower birth weight and developmental neurotoxicity, on the foetus. However, in a two-generation reproductive study in rats exposed to gasoline vapour condensate, no
adverse effects on the foetus were observed. Human Effects: Prolonged/ repeated contact may cause defatting of the skin which can lead to dermatitis and may make the skin more susceptible to irritation and penetration by other materials. Lifetime exposure of rodents to gasoline produces carcinogenicity although the relevance to humans has been questioned. Gasoline induces kidney cancer in male rats as a consequence of accumulation of the alpha2-microglobulin protein in hyaline droplets in the male (but not female) rat kidney. Such abnormal accumulation represents lysosomal overload and leads to chronic renal tubular cell degeneration, accumulation of cell debris, mineralisation of renal medullary tubules and necrosis. A sustained regenerative proliferation occurs in epithelial cells with subsequent neoplastic transformation with continued exposure. The alpha2-microglobulin is produced under the influence of hormonal controls in male rats but not in females and, more importantly, not in humans. #### ETHANOL The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. #### **PROPANE** No significant acute toxicological data identified in literature search. # Ecomist Odour Neutraliser & NAPHTHA PETROLEUM, HEAVY. HYDROTREATED NAPHTHA PETROLEUM, HEAVY, HYDROTREATED Studies indicate that normal, branched and cyclic paraffins are absorbed from the mammalian gastrointestinal tract and that the absorption of n-paraffins is inversely proportional to the carbon chain length, with little absorption above C30. With respect to the carbon chain lengths likely to be present in mineral oil, n-paraffins may be absorbed to a greater extent that iso- or cyclo-paraffins. The major classes of hydrocarbons have been shown to be well absorbed by the gastrointestinal tract in various species. In many cases, the hydrophobic hydrocarbons are ingested in association with dietary lipids. The dependence of hydrocarbon absorption on concomitant triglyceride digestion and absorption, is known as the "hydrocarbon continuum hypothesis", and asserts that a series of solubilising phases in the intestinal lumen, created by dietary triglycerides and their digestion products, afford hydrocarbons a route to the lipid phase of the intestinal absorptive cell (enterocyte) membrane. While some hydrocarbons may traverse the mucosal epithelium unmetabolised and appear as solutes in lipoprotein particles in intestinal lymph, there is evidence that most hydrocarbons partially separate from nutrient lipids and undergo metabolic transformation in the enterocyte. The enterocyte may play a major role in determining the proportion of an absorbed hydrocarbon that, by escaping initial biotransformation, becomes available for deposition in its unchanged form in peripheral tissues such as adipose tissue, or in the liver. | Acute Toxicity | × | Carcinogenicity | × | |-----------------------------------|---|--------------------------|---| | Skin Irritation/Corrosion | × | Reproductivity | × | | Serious Eye Damage/Irritation | ✓ | STOT - Single Exposure | × | | Respiratory or Skin sensitisation | × | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | × | Legend: X - Data either not available or does not fill the criteria for classification Data available to make classification #### **SECTION 12 Ecological information** #### Toxicity | | Endpoint | Test Duration (hr) | | Species | | Value | Source | |---|------------------|-----------------------------------|------|-------------------------------|----------|------------------|------------------| | Ecomist Odour Neutraliser | Not
Available | Not Available | | Not Available | | Not
Available | Not
Available | | naphtha petroleum, heavy,
hydrotreated | Endpoint | Test Duration (hr) | | Species | | Value | Source | | | EC50(ECx) | 96h Algae or other aquatic plants | | | 64mg/l | 2 | | | | EC50 | 96h | | Algae or other aquatic plants | | 64mg/l | 2 | | | Endpoint | Test Duration (hr) | Spe | cies | Value | | Source | | | EC50 | 96h | Alga | ae or other aquatic plants | <0.001m | g/L | 4 | | | EC50(ECx) | 96h | Alga | ae or other aquatic plants | <0.001m | g/L | 4 | | ethanol | EC50 | 72h | Alga | ae or other aquatic plants | 275mg/l | | 2 | | | LC50 | 96h | Fish | ı | 21.272-2 | 7.015mg/L | 4 | | | EC50 | 48h | Cru | stacea | >0.188m | g/L | 4 | | | Endpoint | Test Duration (hr) | | Species | | Value | Source | | butane | EC50(ECx) | 96h | | Algae or other aquatic plants | | 7.71mg/l | 2 | | 24141.10 | LC50 | 96h | | Fish | | 24.11mg/l | 2 | Version No: 2.6.2.1 Page 12 of 17 Issue Date: 21/05/2021 Print Date: 21/05/2021 #### **Ecomist Odour Neutraliser** EC50 96h 7.71mg/l 2 Algae or other aquatic plants Endpoint Test Duration (hr) Species Value Source EC50(ECx) Algae or other aquatic plants 7.71mg/l 96h 2 propane 2 EC50 96h Algae or other aquatic plants 7.71mg/l LC50 96h 24.11mg/l 2 Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite Legend: V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessmen Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data When ethanol is released into the soil it readily and quickly biodegrades but may leach into ground water; most is lost by evaporation. When released into water the material readily evaporates and is biodegradable Ethanol does not bioaccumulate to an appreciable extent. The material is readily degraded by reaction with photochemically produced hydroxy radicals; release into air will result in photodegradation and wet deposition. TERRESTRIAL FATE: An estimated Koc value of 1 indicates that ethanol is expected to have very high mobility in soil. Volatilisation of ethanol from moist soil surfaces is expected to be an important fate process given a Henry's Law constant of 5X10-6 atm-m3/mole. The potential for volatilisation of ethanol from dry soil surfaces may exist based upon an extrapolated vapor pressure of 59.3 mmHg. Biodegradation is expected to be an important fate process for ethanol based on half-lives on the order of a few days for ethanol in sandy soil/groundwater microcosms. AQUATIC FATE: An estimated Koc value of 1 indicates that ethanol is not expected to adsorb to suspended solids and sediment. Volatilisation from water surfaces is expected based upon a Henry's Law constant of 5X10-6 atm-m3/mole. Using this Henry's Law constant and an estimation method, volatilisation half-lives for a model river and model lake are 3 and 39 days, respectively. An estimated BCF= 3, from a log Kow of -0.31 suggests bioconcentration in aquatic organisms is low. Hydrolysis and photolysis in sunlit surface waters is not expected to be an important environmental fate process for ethanol since this compound lacks functional groups that hydrolyse or absorb light under environmentally relevant conditions. Ethanol was degraded with half-lives on the order of a few days in aquatic studies conducted using microcosms constructed with a low organic sandy soil and groundwater, indicating it is unlikely to be persistent in aquatic environments(8). ATMOSPHERIC FATE: Ethanol, which has an extrapolated vapor pressure of 59.3 mm Hg at 25 deg C, is expected to exist solely as a vapor in the ambient atmosphere Vapour-phase ethanol is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 5 days, calculated from its rate constant of 3.3X10-12 m3/molecule-sec at 25 deg C. #### **Ecotoxicity:** log Kow: -0.31- -0.32 Half-life (hr) air: 144 Half-life (hr) H2O surface water: 144 Henry's atm m3 /mol: 6.29E-06 BOD 5 if unstated: 0.93-1.67.63% COD: 1.99-2.11.97% ThOD: 2.1 When released in the environment, alkanes don't undergo rapid biodegradation, because they have no functional groups (like hydroxyl or carbonyl) that are needed by most organisms in order to metabolize the compound. However, some bacteria can metabolise some alkanes (especially those linear and short), by oxidizing the terminal carbon atom. The product is an alcohol, that could be next oxidised to an aldehyde, and finally to a carboxylic acid. The resulting fatty acid could be metabolised through the fatty acid degradation pathway. For petroleum distillates: #### Environmental fate: When petroleum substances are released into the environment, four major fate processes will take place: dissolution in water, volatilization, biodegradation and adsorption. These processes will cause changes in the composition of these UVCB substances. In the case of spills on land or water surfaces, photodegradation-another fate process-can also be significant. As noted previously, the solubility and vapour pressure of components within a mixture will differ from those of the component alone. These interactions are complex for complex UVCBs such as petroleum hydrocarbons. Each of the fate processes affects hydrocarbon families differently. Aromatics tend to be more water-soluble than aliphatics of the same carbon number, whereas aliphatics tend to be more volatile. Thus, when a petroleum mixture is released into the environment, the principal water contaminants are likely to be aromatics, whereas aliphatics will be the principal air contaminants . The trend in volatility by component class is as follows: alkenes = alkanes > aromatics = cycloalkanes The most soluble and volatile components have the lowest molecular weight; thus there is a general shift to higher molecular weight components in residual
materials. Biodegradation: Biodegradation is almost always operative when petroleum mixtures are released into the environment. It has been widely demonstrated that nearly all soils and sediments have populations of bacteria and other organisms capable of degrading petroleum hydrocarbons Degradation occurs both in the presence and absence of oxygen. Two key factors that determine degradation rates are oxygen supply and molecular structure. In general, degradation is more rapid under aerobic conditions. Decreasing trends in degradation rates according to structure are as follows: - (1) n-alkanes, especially in the C10-C25 range, which are degraded readily: - (2) isoalkanes: - (3) alkenes: - (4) benzene, toluene, ethylbenzene, xylenes (BTEX) (when present in concentrations that are not toxic to microorganisms); - (5) monoaromatics: - (6) polynuclear (polycyclic) aromatic hydrocarbons (PAHs); and - (7) higher molecular weight cycloalkanes (which may degrade very slowly. Three weathering processes-dissolution in water, volatilization and biodegradation-typically result in the depletion of the more readily soluble, volatile and degradable compounds and the accumulation of those most resistant to these processes in residues. When large quantities of a hydrocarbon mixture enter the soil compartment, soil organic matter and other sorption sites in soil are fully saturated and the hydrocarbons will begin to form a separate phase (a non-aqueous phase liquid, or NAPL) in the soil. At concentrations below the retention capacity for the hydrocarbon in the soil, the NAPL will be immobile this is referred to as residual NAPL. Above the retention capacity, the NAPL becomes mobile and will move within the soil Bioaccumulation: Bioaccumulation potential was characterized based on empirical and/or modelled data for a suite of petroleum hydrocarbons expected to occur in petroleum substances. Bioaccumulation factors (BAFs) are the preferred metric for assessing the bioaccumulation potential of substances, as the bioconcentration factor (BCF) may not adequately account for the bioaccumulation potential of substances via the diet, which predominates for substances with log Kow > ~4.5 In addition to fish BCF and BAF data, bioaccumulation data for aquatic invertebrate species were also considered. Biota-sediment/soil accumulation factors (BSAFs), trophic magnification factors and biomagnification factors were also considered in characterizing bioaccumulation potential. Overall, there is consistent empirical and predicted evidence to suggest that the following components have the potential for high bioaccumulation, with BAF/BCF values greater than 5000: C13-C15 isoalkanes, C12 alkenes, C12-C15 one-ring cycloalkanes, C12 and C15 two-ring cycloalkanes, C14 polycycloalkanes, C15 one-ring aromatics, C15 and C20 cycloalkane monoaromatics, C12-C13 diaromatics, C20 cycloalkane diaromatics, and C14 and C20 three-ring PAHs These components are associated with a slow rate of metabolism and are highly lipophilic. Exposures from water and diet, when combined, suggest that the rate of uptake would exceed that of the total elimination rate. Most of these components are not expected to biomagnify in aquatic or terrestrial foodwebs, largely because a combination of metabolism, low dietary assimilation efficiency and growth dilution allows the elimination rate to exceed the uptake rate from the diet; however, one study suggests that some alkyl-PAHs may biomagnify. While only BSAFs were found for some PAHs, it is possible that BSAFs will be > 1 for invertebrates, given that they do not have the same metabolic competency as fish. In general, fish can efficiently metabolize aromatic compounds. There is some evidence that alkylation increases bioaccumulation of naphthalene but it is not known if this can be generalized to larger PAHs or if any potential increase in bioaccumulation due to alkylation will be sufficient to exceed a BAF/BCF of 5000. Some lower trophic level organisms (i.e., invertebrates) appear to lack the capacity to efficiently metabolize aromatic compounds, resulting in high bioaccumulation potential for some Version No: 2.6.2.1 Page 13 of 17 Issue Date: 21/05/2021 Print Date: 21/05/2021 Print Date: 21/05/2021 #### **Ecomist Odour Neutraliser** aromatic components as compared to fish. This is the case for the C14 three-ring PAH, which was bioconcentrated to a high level (BCF > 5000) by invertebrates but not by fish. There is potential for such bioaccumulative components to reach toxic levels in organisms if exposure is continuous and of sufficient magnitude, though this is unlikely in the water column following a spill scenario due to relatively rapid dispersal Bioaccumulation of aromatic compounds might be lower in natural environments than what is observed in the laboratory. PAHs may sorb to organic material suspended in the water column (dissolved humic material), which decreases their overall bioavailability primarily due to an increase in size. This has been observed with fish Ecotoxicity: Diesel fuel studies in salt water are available. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/L The tropical mysid Metamysidopsis insularis was shown to be very sensitive to diesel fuel, with a 96-hour LC50 value of 0.22 mg/L this species has been shown to be as sensitive as temperate mysids to toxicants. However, However this study used nominal concentrations, and therefore was not considered acceptable. In another study involving diesel fuel, the effect on brown or common shrimp (Crangon crangon) a 96-hour LC50 of 22 mg/L was determined. A "gas oil"was also tested and a 96-hour LC50 of 12 mg/L was determined. The steady state cell density of marine phytoplankton decreased with increasing concentrations of diesel fuel, with different sensitivities between species. The diatom Phaeodactylum tricornutum showed a 20% decrease in cell density in 24 hours following a 3 mg/L exposure with a 24-hour no-observed effect concentration (NOEC) of 2.5 mg/L. The microalga Isochrysis galbana was more tolerant to diesel fuel, with a 24-hour lowest-observed-effect concentration (LOEC) of 26 mg/L (14% decrease in cell density), and a NOEC of 25 mg/L. Finally, the green algae Chlorella salina was relatively insensitive to diesel fuel contamination, with a 24-hour LOEC of 170 mg/L (27% decrease in cell density), and a NOEC of 160 mg/L. All populations of phytoplankton returned to a steady state within 5 days of exposure In sandy soils, earthworm (Eisenia fetida) mortality only occurred at diesel fuel concentrations greater than 10 000 mg/kg, which was also the concentration at which sub-lethal weight loss was recorded Nephrotoxic effects of diesel fuel have been documented in several animal and human studies. Some species of birds (mallard ducks in particular) are generally resistant to the toxic effects of petrochemical ingestion, and large amounts of petrochemicals are needed in order to cause direct mortality For butane: log Kow: 2.89 Koc: 450-900 BCF: 1.9 #### **Environmental Fate** Terrestrial Fate: An estimated Koc value of 900, determined from a log Kow of 2.89 indicates that n-butane is expected to have low mobility in soil. Volatilisation of n-butane from moist soil surfaces is expected to be an important fate process given an estimated Henry's Law constant of 0.95 atm-cu m/mole, derived from its vapor pressure, 1820 mm Hg and water solubility, 61.2 mg/l. The potential for volatilisation of n-butane from dry soil surfaces may exist based upon its vapor pressure. While volatilisation from soil surfaces is expected to be the predominant fate process of n-butane released to soil, this compound is also susceptible to biodegradation. In one soil, a biodegradation rate of 1.8 mgC/day/kg dry soil was reported. Aquatic fate: The estimated Koc value indicates that n-butane may adsorb to suspended solids and sediment. Volatilisation from water surfaces is expected based upon an estimated Henry's Law constant Using this Henry's Law constant volatilisation half-lives for a model river and model lake are estimated to be 2.2 hours and 3 days, respectively. An estimated BCF of 33 derived from the log Kow suggests the potential for bioconcentration in aquatic organisms is moderate. While volatilisation from water surfaces is expected to be the major fate process for n-butane released to water, biodegradation of this compound is also expected to occur. In a screening study, complete biodegradation was reported in 34 days. In a second study using a defined microbial culture, it was reported that n-butane was degraded to 2-butanone and 2-butanol. Photolysis or hydrolysis of n-butane in aquatic systems is not expected to be important. Atmospheric fate: According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere and the vapour pressure, n-butane, is expected to exist solely as a gas in the ambient atmosphere. Gas-phase n-butane is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 6.3 days, calculated from its rate constant of 2.54x10-12 cu cm/molecule-sec at 25 deg. Based on data for iso-octane and n-hexane, n-butane is not expected to absorb UV light in the environmentally significant range, >290 nm and probably will not
undergo direct photolysis in the atmosphere. Experimental data showed that 7.7% of the n-butane fraction in a dark chamber reacted with nitrogen oxide to form the corresponding alkyl nitrate, suggesting nighttime reactions with radical species and nitrogen oxides may contribute to the atmospheric transformation of n-butane. # For propane: Environmental Fate Terrestrial fate:: An estimated Koc value of 460 determined from a log Kow of 2.36 indicates that propane is expected to have moderate mobility in soil. Volatilisation of propane from moist soil surfaces is expected to be an important fate process given an estimated Henry's Law constant of 7.07x10-1 atm-cu m/mole, derived from its vapor pressure, 7150 mm Hg, and water solubility, 62.4 mg/L. Propane is expected to volatilise from dry soil surfaces based upon its vapor pressure. Using cell suspensions of microorganisms isolated from soil and water, propane was oxidised to acetone within 24 hours, suggesting that biodegradation may be an important fate process in soil and sediment. Aquatic fate: The estimated Koc value indicates that propane is expected to adsorb to suspended solids and sediment. Volatilisation from water surfaces is expected based upon an estimated Henry's Law constant. Using this Henry's Law constant volatilisation half-lives for a model river and model lake are estimated to be 41 minutes and 2.6 days, respectively. An estimated BCF of 13.1 using log Kow suggests the potential for bioconcentration in aquatic organisms is low. After 192 hr, the trace concentration of propane contained in gasoline remained unchanged for both a sterile control and a mixed culture sample collected from ground water contaminated with gasoline. This indicates that biodegradation may not be an Atmospheric fate:: According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere and vapour pressure, propane is expected to exist solely as a gas in the ambient atmosphere. Gas-phase propane is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 14 days, calculated from its rate constant of 1.15x10-12 cu cm/molecule-sec at 25 deg C. Propane does not contain chromophores that absorb at wavelengths >290 nm and therefore is not expected to be susceptible to direct photolysis by sunlight. DO NOT discharge into sewer or waterways. ### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |------------|-----------------------------|-----------------------------| | ethanol | LOW (Half-life = 2.17 days) | LOW (Half-life = 5.08 days) | | butane | LOW | LOW | | propane | LOW | LOW | #### Bioaccumulative potential | - | | |------------|----------------------| | Ingredient | Bioaccumulation | | ethanol | LOW (LogKOW = -0.31) | | butane | LOW (LogKOW = 2.89) | | propane | LOW (LoaKOW = 2.36) | #### Mobility in soil | Ingredient | Mobility | |------------|-------------------| | ethanol | HIGH (KOC = 1) | | butane | LOW (KOC = 43.79) | | propane | LOW (KOC = 23.74) | Version No: 2.6.2.1 Page **14** of **17** Issue Date: 21/05/2021 #### **Ecomist Odour Neutraliser** Print Date: 21/05/2021 #### **SECTION 13 Disposal considerations** #### Waste treatment methods Product / Packaging disposal - Recycle wherever possible or consult manufacturer for recycling options. - Consult State Land Waste Management Authority for disposal. - ▶ DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - ▶ Where in doubt contact the responsible authority. - ► Consult State Land Waste Management Authority for disposal. ▶ Bury residues and emptied aerosol cans at an approved site. - Discharge contents of damaged aerosol cans at an approved site. - Allow small quantities to evaporate. - ► DO NOT incinerate or puncture aerosol cans. Ensure that the hazardous substance is disposed in accordance with the Hazardous Substances (Disposal) Notice 2017 #### **Disposal Requirements** Packages that have been in direct contact with the hazardous substance must be only disposed if the hazardous substance was appropriately removed and cleaned out from the package. The package must be disposed according to the manufacturer's directions taking into account the material it is made of. Packages which hazardous content have been appropriately treated and removed may be recycled. The hazardous substance must only be disposed if it has been treated by a method that changed the characteristics or composition of the substance and it is no longer hazardous. Only dispose to the environment if a tolerable exposure limit has been set for the substance. Only deposit the hazardous substance into or onto a landfill or sewage facility or incinerator, where the hazardous substance can be handled and treated appropriately. #### **SECTION 14 Transport information** #### **Labels Required** | Marine Pollutant | NO | |------------------|----------------| | HAZCHEM | Not Applicable | #### Land transport (UN) | zana tranoport (GH) | | | | |------------------------------|--|--|--| | UN number | 1950 | | | | UN proper shipping name | AEROSOLS | | | | Transport hazard class(es) | Class 2.1 Subrisk Not Applicable | | | | Packing group | Not Applicable | | | | Environmental hazard | Not Applicable | | | | Special precautions for user | Special provisions 63; 190; 277; 327; 344; 381 Limited quantity 1000ml | | | #### Air transport (ICAO-IATA / DGR) | UN number | 1950 | | | | |------------------------------|---|--------------------------|---|--| | UN proper shipping name | Aerosols, flammable (engine starting fluid); Aerosols, flammable | | | | | Transport hazard class(es) | ICAO/IATA Class ICAO / IATA Subrisk ERG Code | 2.1 Not Applicable 10L | | | | Packing group | Not Applicable | Not Applicable | | | | Environmental hazard | Not Applicable | | | | | Special precautions for user | Special provisions Cargo Only Packing Instructions Cargo Only Maximum Qty / Pack Passenger and Cargo Packing Instructions Passenger and Cargo Maximum Qty / Pack Passenger and Cargo Limited Quantity Packing Instructions Passenger and Cargo Limited Maximum Qty / Pack | | A145 A167 A802; A1 A145 A167 A802 203 150 kg 203; Forbidden 75 kg; Forbidden Y203; Forbidden 30 kg G; Forbidden | | Version No: 2.6.2.1 Page 15 of 17 Issue Date: 21/05/2021 #### **Ecomist Odour Neutraliser** Print Date: 21/05/2021 #### Sea transport (IMDG-Code / GGVSee) | UN number | 1950 | | | |------------------------------|---|--|--| | UN proper shipping name | AEROSOLS | | | | Transport hazard class(es) | IMDG Class 2.1 IMDG Subrisk Not Applicable | | | | Packing group | Not Applicable | | | | Environmental hazard | Not Applicable | | | | Special precautions for user | EMS Number F-D , S-U Special provisions 63 190 277 327 344 381 959 Limited Quantities 1000 ml | | | #### Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable #### Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |--|---------------| | naphtha petroleum, heavy, hydrotreated | Not Available | | ethanol | Not Available | | butane | Not Available | | propane | Not Available | #### Transport in bulk in accordance with the ICG Code | Product name | Ship Type | |--|---------------| | naphtha petroleum, heavy, hydrotreated | Not Available | | ethanol | Not Available | | butane | Not Available | | propane | Not Available | #### **SECTION 15 Regulatory information** #### Safety, health and environmental regulations / legislation specific for the substance or mixture This substance is to be managed using the conditions specified in an applicable Group Standard | HSR Number | Group Standard | | |------------|--|--| | HSR002515 | Aerosols (Flammable) Group Standard 2017 | | #### naphtha petroleum, heavy, hydrotreated is found on the following regulatory lists Chemical Footprint Project - Chemicals of High Concern List International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs New Zealand Approved Hazardous Substances with controls New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals New Zealand Inventory of Chemicals (NZIoC) New Zealand Workplace Exposure Standards (WES) #### ethanol is found on the following regulatory lists New Zealand Approved Hazardous Substances with controls New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data New Zealand Inventory of Chemicals (NZIoC) New Zealand Workplace Exposure Standards (WES) #### butane is found on the following regulatory lists Chemical Footprint Project - Chemicals of High Concern List New Zealand Approved Hazardous Substances with controls New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of
Chemicals - Classification Data New Zealand Inventory of Chemicals (NZIoC) New Zealand Workplace Exposure Standards (WES) # propane is found on the following regulatory lists New Zealand Approved Hazardous Substances with controls New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data New Zealand Inventory of Chemicals (NZIoC) New Zealand Workplace Exposure Standards (WES) #### **Hazardous Substance Location** Subject to the Health and Safety at Work (Hazardous Substances) Regulations 2017. | Hazard Class | Quantity (Closed Containers) | Quantity (Open Containers) | |--------------|------------------------------------|------------------------------------| | 2.1.2A | 3 000 L (aggregate water capacity) | 3 000 L (aggregate water capacity) | Version No: 2.6.2.1 Page 16 of 17 Issue Date: 21/05/2021 #### **Ecomist Odour Neutraliser** Print Date: 21/05/2021 #### **Certified Handler** Subject to Part 4 of the Health and Safety at Work (Hazardous Substances) Regulations 2017. | Class of substance | Quantities | | |--------------------|----------------|--| | Not Applicable | Not Applicable | | Refer Group Standards for further information #### Maximum quantities of certain hazardous substances permitted on passenger service vehicles Subject to Regulation 13.14 of the Health and Safety at Work (Hazardous Substances) Regulations 2017. | Hazard Class | Gas (aggregate water capacity in mL) | Liquid (L) | Solid (kg) | Maximum quantity per package for each classification | |--------------|--------------------------------------|------------|------------|--| | 2.1.2A | | | | 1L (aggregate water capacity) | #### **Tracking Requirements** Not Applicable #### **National Inventory Status** | National Inventory | Status | |--|---| | Australia - AIIC / Australia
Non-Industrial Use | Yes | | Canada - DSL | Yes | | Canada - NDSL | No (naphtha petroleum, heavy, hydrotreated; ethanol; butane; propane) | | China - IECSC | Yes | | Europe - EINEC / ELINCS / NLP | Yes | | Japan - ENCS | No (naphtha petroleum, heavy, hydrotreated) | | Korea - KECI | Yes | | New Zealand - NZIoC | Yes | | Philippines - PICCS | Yes | | USA - TSCA | Yes | | Taiwan - TCSI | Yes | | Mexico - INSQ | Yes | | Vietnam - NCI | Yes | | Russia - FBEPH | Yes | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | ### **SECTION 16 Other information** | Revision Date | 21/05/2021 | |---------------|------------| | Initial Date | 26/05/2016 | # SDS Version Summary | Version | Date of
Update | Sections Updated | |---------|-------------------|--| | 1.6.2.1 | 30/04/2021 | Regulation Change | | 1.6.2.1 | 21/05/2021 | Acute Health (eye), Acute Health (inhaled), Acute Health (skin), Acute Health (swallowed), Advice to Doctor, Chronic Health, Classification, Engineering Control, Environmental, Fire Fighter (fire/explosion hazard), First Aid (eye), First Aid (swallowed), Ingredients, Personal Protection (other), Personal Protection (eye), Personal Protection (hands/feet), Physical Properties, Spills (major), Storage (storage incompatibility), Supplier Information | #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. ## **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations ES: Exposure Standard OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection Version No: 2.6.2.1 Page 17 of 17 Issue Date: 21/05/2021 #### **Ecomist Odour Neutraliser** Print Date: 21/05/2021 OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index AIIC: Australian Inventory of Industrial Chemicals DSL: Domestic Substances List NDSL: Non-Domestic Substances List IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances ELINCS: European List of Notified Chemical Substances NLP: No-Longer Polymers ENCS: Existing and New Chemical Substances Inventory KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances Powered by AuthorITe, from Chemwatch.