

 SGT

Lock Profile: HU162 VAG 2015+Tool Type: 2-in-1 Pick & Decoder

Compatibility: DOORFinish: Anti-GlareIC Card: 1421

Cuts: 10SIde Cuts: 4

• Security Key (One Sided Entry)

Art ID: LP-HU162-SC4-D-AG

SUITS

VOLKSWAGEN

PASSAT 2015-

TOUAREG 2018-

AUDI

- A4 2015-
- A7 2015-
- Q3 2015-
- Q5 2015-
- Q7 2015-
- TT 2015-

OEM Door Lock & Key

Axis A.

Axis B.

Axis C.

李志勤

PICKING DIRECTION - Axis A

PICKING SIDE CUTS - Axis B & C

1.	2.	3.	4.
GREEN LEVER (RIGHT SIDE)	GREEN LEVER (RIGHT SIDE)	PINK LEVER (LEFT SIDE)	PINK LEVER (LEFT SIDE)

Picking & Decoding

DECODING DIRECTION - Axis A

TOP

5. | 6. | 7. | 8. | 9. | 10. |

5. | 6. | 7. | 8. | 9. | 10. |

5. | 6. | 7. | 8. | 9. | 10. |

- When decoding this lock it is vital to decode both Top & Bottom in each cut position.
- The reading of the cut depth Top & the cut depth Bottom will always add up to 6.
- Example when reading a 1 depth at the Top, The bottom should read as a 5 at the bottom to equal 6.
- Using the table above fill in both positions Top & Bottom in each cut position. The positions in Red are the cuts that need to be entered into your key machine.

DECODED EXAMPLE AXIS A

ТОР	5.	3	3	5	9.	2
воттом	5.	3	^{7.} 3	8.	2	4

The Partial Key Bitting on Axis A is 1 3 3 1 2 4 Need to now decode Axis B & C to complete the Bitting Calculations.

Picking & Decoding

Axis B & Axis C Are calculated by retrieving the Angles of each cut position before & after they are picked.

	Before Picked	After Picked	Bitting
1.			
2.			
3.			
4.			

MASTER TABLE

Before Picked	After Picked	Bitting Calculation
60	30	2
60	60	4
90	30	1
90	60	3

DECODED EXAMPLE

	Before Picked	After Picked	Bitting
1.	90	60	3
2.	60	60	4
3.	90	60	3
4.	90	30	1

Bitting is Calculated using the Master Table below. **Example:** Position 1 Read as 90 before picked & 60 when picked. Using the table below 90 & 60 = 3

The Calculated Bitting is: 3 - 4 - 3 - 1

MASTER TABLE

Before Picked	After Picked	Bitting Calculation		
60	30	2		
60	60	4		
90	30	1		
90	60	3		

Picking & Decoding

The Bitting must now be entered into another table to calculate Axis B & C completely for Key Cutting.

	1.	2.	3.	4.
Axis B				
Axis C				

The calculated Bitting must be entered into the red cells of the table.

	1.	2.	3.	4.
Axis B			3	1
Axis C	3	4		

To Calculate the missing cuts in the White cells Each cut position must ${\sf Add}$ up to ${\sf 5.}$

	1.	2.	3.	4.
Axis B	2	1	3	1
Axis C	3	4	3	4

李志勤

DECODED EXAMPLE AXIS A

TOP

BOTTOM

1	3	3	8. 5	9. 4	2
5.	6.	3	8.	2	4

1.

2.

3.

4.

Axis B	2	1	3	1
Axis C	3	4	3	4

Picking & Decoding

Fill in the final Table with known bitting from previous tables.

	1	2	3	4	5	6	7	8	9	10
Axis A					1	3	3	1	2	4
Axis B	2	1	3	1						
Axis C	3	4	3	4						

	1	2	3	4	5	6	7	8	9	10
Axis A	4	5	3	5	1	3	3	1	2	4
Axis B	2	1	3	1	1	1	1	1	1	1
Axis C	3	4	3	4	2	2	2	2	2	2

On **Axis A** - To Calculate the 1st 4 Bittings in the White cells Each cut position must Add up to **6**.

Calculate using the Bitting from Axis B . and add the difference to Axis A in each cut position.

On Axis B - Fill the rest of the bittings with 111111

On Axis C - Fill the rest of the Bittings with 222222

	1	2	3	4	5	6	7	8	9	10
Axis A	4	5	3	5	1	3	3	1	2	4
Axis B	2	1	3	1	1	1	1	1	1	1
Axis C	3	4	3	4	2	2	2	2	2	2

Decoding & Cutting

