Macsim Fastenings Chemwatch: **5275-63**Version No: **3.1.1.1** Safety Data Sheet according to WHS and ADG requirements Chemwatch Hazard Alert Code: 3 Issue Date: **05/10/2018**Print Date: **07/10/2018**L.GHS.AUS.EN # SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING # **Product Identifier** | Product name | Super Load | | |-------------------------------|--|--| | Synonyms | 71SL585 | | | Proper shipping name | AMINES, SOLID, CORROSIVE, N.O.S. or POLYAMINES, SOLID, CORROSIVE, N.O.S. (contains isophorone diamine) | | | Other means of identification | Not Available | | # Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses Pure epoxy resin # Details of the supplier of the safety data sheet | Registered company name | Macsim Fastenings | | |-------------------------|--|--| | Address | 10 Wonderland Drive Eastern Creek NSW 2766 Australia | | | Telephone | +61 2 99881 2400 | | | Fax | +61 2 9881 2444 | | | Website | Not Available | | | Email | info@macsim.com.au | | # **Emergency telephone number** | Association / Organisation Poison Information Center (Australia) | | |--|--| | Emergency telephone numbers | 13 11 26 (Poison Information Center) Aus 24 Hr | | Other emergency telephone numbers | Not Available | # **SECTION 2 HAZARDS IDENTIFICATION** #### Classification of the substance or mixture | Poisons Schedule | S5 | | |--------------------|---|--| | Classification [1] | Metal Corrosion Category 1, Skin Corrosion/Irritation Category 1B, Skin Sensitizer Category 1, Respiratory Sensitizer Category 1, Germ cell mutagenicity Category 2, Carcinogenicity Category 2, Acute Aquatic Hazard Category 2, Chronic Aquatic Hazard Category 2 | | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HSIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | | # Label elements Hazard pictogram(s) SIGNAL WORD DANGER # Super Load # Hazard statement(s) | H290 | May be corrosive to metals. | | |--------|---|--| | H314 | Causes severe skin burns and eye damage. | | | H317 | flay cause an allergic skin reaction. | | | H334 | ay cause allergy or asthma symptoms or breathing difficulties if inhaled. | | | H341 | Suspected of causing genetic defects. | | | H351 | Suspected of causing cancer. | | | H411 | Toxic to aquatic life with long lasting effects. | | | AUH019 | May form explosive peroxides. | | # Precautionary statement(s) Prevention | P201 | Obtain special instructions before use. | | |------|--|--| | P260 | Do not breathe dust/fume/gas/mist/vapours/spray. | | | P280 | Wear protective gloves/protective clothing/eye protection/face protection. | | | P281 | Use personal protective equipment as required. | | | P285 | In case of inadequate ventilation wear respiratory protection. | | | P234 | Keep only in original container. | | | P273 | Avoid release to the environment. | | | P272 | Contaminated work clothing should not be allowed out of the workplace. | | # Precautionary statement(s) Response | P301+P330+P331 | IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. | | | |----------------|--|--|--| | P303+P361+P353 | IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower. | | | | P304+P340 | IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing. | | | | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | | | P308+P313 | F exposed or concerned: Get medical advice/attention. | | | | P310 | Immediately call a POISON CENTER or doctor/physician. | | | | P342+P311 | If experiencing respiratory symptoms: Call a POISON CENTER or doctor/physician. | | | | P363 | Wash contaminated clothing before reuse. | | | | P302+P352 | IF ON SKIN: Wash with plenty of soap and water. | | | | P333+P313 | If skin irritation or rash occurs: Get medical advice/attention. | | | | P390 | Absorb spillage to prevent material damage. | | | | P391 | Collect spillage. | | | # Precautionary statement(s) Storage | P405 | Store locked up. | |------|------------------| | | · | # Precautionary statement(s) Disposal P501 Dispose of contents/container in accordance with local regulations. # SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS #### **Substances** See section below for composition of Mixtures # **Mixtures** | CAS No | %[weight] | Name | | |------------|-----------|--|--| | 25068-38-6 | 30-40 | bisphenol A/ diglycidyl ether polymer, high molecular weight | | | 9003-36-5 | 10-20 | bisphenol F/ epichlorohydrin copolymer | | | 16096-31-4 | 10-20 | 1,6-hexanediol diglycidyl ether | | | 2855-13-2 | 3-10 | isophorone diamine | | | 100-51-6 | 3-10 | benzyl alcohol | | Chemwatch: 5275-63 Page 3 of 25 Issue Date: 05/10/2018 Version No: 3.1.1.1 Print Date: 07/10/2018 Super Load | 111-40-0 | 1-3 | diethylenetriamine | |-----------|-----|---| | 90-72-2 | 1-3 | 2,4,6-tris[(dimethylamino)methyl]phenol | | 108-95-2 | 1-3 | phenol | | 1477-55-0 | 1-3 | benzene-1,3-dimethanamine | #### **SECTION 4 FIRST AID MEASURES** ### Description of first aid measures | Eye Contact | If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | |--------------|---| | Skin Contact | If skin or hair contact occurs: ► Immediately flush body and clothes with large amounts of water, using safety shower if available. ► Quickly remove all contaminated clothing, including footwear. ► Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. ► Transport to hospital, or doctor. | | Inhalation | If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor. Inhalation of vapours or aerosols (mists, fumes) may cause lung oedema. Corrosive substances may cause lung damage (e.g. lung oedema, fluid in the lungs). As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (yet) manifested. Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may be considered. This must definitely be left to a doctor or person authorised by him/her. (ICSC13719) | | Ingestion | For advice, contact a Poisons Information Centre or a doctor at once. Urgent hospital treatment is likely to be needed. If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can
comfortably drink. Transport to hospital or doctor without delay. | # Indication of any immediate medical attention and special treatment needed Treat symptomatically. For acute or short-term repeated exposures to highly alkaline materials: - rightary Respiratory stress is uncommon but present occasionally because of soft tissue edema. - Unless endotracheal intubation can be accomplished under direct vision, cricothyroidotomy or tracheotomy may be necessary. - ► Oxygen is given as indicated. - ▶ The presence of shock suggests perforation and mandates an intravenous line and fluid administration. - Damage due to alkaline corrosives occurs by liquefaction necrosis whereby the saponification of fats and solubilisation of proteins allow deep penetration into the tissue. Alkalis continue to cause damage after exposure. #### INGESTION: • Milk and water are the preferred diluents No more than 2 glasses of water should be given to an adult. - ▶ Neutralising agents should never be given since exothermic heat reaction may compound injury. - * Catharsis and emesis are absolutely contra-indicated. - * Activated charcoal does not absorb alkali. - * Gastric lavage should not be used. Supportive care involves the following: - Withhold oral feedings initially. - If endoscopy confirms transmucosal injury start steroids only within the first 48 hours. - ► Carefully evaluate the amount of tissue necrosis before assessing the need for surgical intervention. Patients should be instructed to seek medical attention whenever they develop difficulty in swallowing (dysphagia). ### SKIN AND EYE: Injury should be irrigated for 20-30 minutes. Eye injuries require saline. [Ellenhorn & Barceloux: Medical Toxicology] Clinical experience of benzyl alcohol poisoning is generally confined to premature neonates in receipt of preserved intravenous salines. - Metabolic acidosis, bradycardia, skin breakdown, hypotonia, hepatorenal failure, hypotension and cardiovascular collapse are characteristic. - ▶ High urine benzoate and hippuric acid as well as elevated serum benzoic acid levels are found. - ▶ The so-called "gasping syndrome describes the progressive neurological deterioration of poisoned neonates. - Management is essentially supportive. #### **SECTION 5 FIREFIGHTING MEASURES** #### **Extinguishing media** - Foam. - ▶ Dry chemical powder. - ▶ BCF (where regulations permit). - Carbon dioxide. - ▶ Water spray or fog Large fires only. # Special hazards arising from the substrate or mixture | Fire | Incom | patibility | |------|-------|------------| ▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result | Advice for firefighters | | |-------------------------|--| | Fire Fighting | Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Use fire fighting procedures suitable for surrounding area. Do not approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. | | Fire/Explosion Hazard | Non combustible. Not considered a significant fire risk, however containers may burn. Decomposes on heating and produces: carbon monoxide (CO) carbon dioxide (CO2) aldehydes nitrogen oxides (NOx) other pyrolysis products typical of burning organic material. May emit corrosive fumes. WARNING: Long standing in contact with air and light may result in the formation of potentially explosive peroxides. | | HAZCHEM | 2X | # **SECTION 6 ACCIDENTAL RELEASE MEASURES** # Personal precautions, protective equipment and emergency procedures See section 8 # **Environmental precautions** See section 12 | Methods and material for containment and cleaning up | | | | | |--|--|--|--|--| | Minor Spills | Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material. Check regularly for spills and leaks. Clean up all spills immediately. Avoid breathing vapours/ aerosols or dusts and avoid contact with skin and eyes. Place in a suitable, labelled container for waste disposal. | | | | | Major Spills | Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Consider evacuation (or protect in place). | | | | - Contain spill with sand, earth or vermiculite. - ▶ Collect recoverable product into labelled containers for recycling. - Neutralise/decontaminate residue (see Section 13 for specific agent). - ▶ Collect solid residues and seal in labelled drums for disposal. - ▶ Wash area and prevent runoff into drains. Stop leak if safe to do so. - After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. - ▶ If contamination of drains or waterways occurs, advise emergency services. Personal Protective Equipment advice is contained in Section 8 of the SDS. #### **SECTION 7 HANDLING AND STORAGE** #### Precautions for safe handling - · Avoid all personal contact, including inhalation. - ▶ Wear protective clothing when risk of exposure occurs. - ▶ Use in a well-ventilated area. - ▶ WARNING: To avoid violent reaction, ALWAYS add material to water and NEVER water to material. - Avoid smoking, naked lights or ignition sources. - Avoid contact with incompatible materials. - ► When handling, **DO NOT** eat, drink or smoke. - ▶ Keep containers securely sealed when not in use. - ▶ Avoid physical damage to containers. - Always wash hands with soap and water after handling. - ▶ Work clothes should be laundered separately. Launder contaminated clothing before re-use. - Use good occupational work practice. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. Other information Safe handling - Store in original containers. - ▶ Keep containers securely sealed. - No smoking, naked lights or ignition sources. - ▶ Store in a cool, dry, well-ventilated area. - · Store away from incompatible materials and foodstuff containers. - Protect containers against physical damage and check regularly for leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. #### Conditions for safe storage, including any incompatibilities | Suitable container | 585ml Cartridge | | |-------------------------|---|--| | Storage incompatibility | Avoid reaction with oxidising agents Avoid strong acids, acid chlorides, acid anhydrides and chloroformates. | | #### SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION # **Control parameters** #### OCCUPATIONAL EXPOSURE LIMITS (OEL) #### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |---------------------------------|-------------------------------|-----------------------------------|----------------------|------------------|------------------|------------------| | Australia Exposure
Standards | diethylenetriamine | Diethylene triamine | 1 ppm / 4.2
mg/m3 | Not
Available | Not
Available | Not
Available | | Australia Exposure
Standards | phenol | Phenol | 1 ppm / 4
mg/m3 | Not
Available | Not
Available | Not
Available | | Australia Exposure
Standards | benzene-
1,3-dimethanamine | m-Xylene-alpha,alpha'-
diamine | Not Available | Not
Available | 0.1 mg/m3 | Not
Available | # **EMERGENCY LIMITS** | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |--|---|----------|-----------|-------------| | bisphenol A/ diglycidyl ether polymer, high molecular weight | Epoxy resin includes EPON 1001, 1007, 820, ERL-2795 | 90 mg/m3 | 990 mg/m3 | 5,900 mg/m3 | | benzyl alcohol Benzyl alcohol | | 30 ppm | 52 ppm | 740 ppm | | diethylenetriamine | Diethylenetriamine | 3 ppm | 8.5 ppm | 51 ppm | | 2,4,6-
tris[(dimethylamino)methyl]phenol | Tris(dimethylaminomethyl)phenol, 2,4,6- | 3.6 mg/m3 | 40 mg/m3 | 240
mg/m3 | |---|---|---------------|---------------|---------------| | phenol | Phenol | Not Available | Not Available | Not Available | | Ingredient | Original IDLH | Revised IDLH | |--|---------------|---------------| | bisphenol A/ diglycidyl ether polymer, high molecular weight | Not Available | Not Available | | bisphenol F/ epichlorohydrin copolymer | Not Available | Not Available | | 1,6-hexanediol diglycidyl ether | Not Available | Not Available | | isophorone diamine | Not Available | Not Available | | benzyl alcohol | Not Available | Not Available | | diethylenetriamine | Not Available | Not Available | | 2,4,6-
tris[(dimethylamino)methyl]phenol | Not Available | Not Available | | phenol | 250 ppm | Not Available | | benzene-1,3-dimethanamine | Not Available | Not Available | #### MATERIAL DATA #### **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in special circumstances. If risk of overexposure exists, wear approved respirator. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. Provide adequate ventilation in warehouses and enclosed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. # Appropriate engineering controls | Type of Contaminant: | Air Speed: | |---|---------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5 m/s
(50-100 f/min) | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s
(100-200 f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s
(200-500 f/min.) | | grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion) | 2.5-10 m/s
(500-2000 f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. # Super Load #### Personal protection # Eye and face protection #### ▶ Chemical goggles. - Full face shield may be required for supplementary but never for primary protection of eyes. - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] #### Skin protection #### See Hand protection below #### NOTE: - ▶ The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. - ► Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. When handling liquid-grade epoxy resins wear chemically protective gloves, boots and aprons. The performance, based on breakthrough times ,of: - Ethyl Vinyl Alcohol (EVAL laminate) is generally excellent - · Butyl Rubber ranges from excellent to good - · Nitrile Butyl Rubber (NBR) from excellent to fair. - Neoprene from excellent to fair - Polyvinyl (PVC) from excellent to poor #### Hands/feet protection #### As defined in ASTM F-739-96 - Excellent breakthrough time > 480 min - Good breakthrough time > 20 min - · Fair breakthrough time < 20 min - Poor glove material degradation Gloves should be tested against each resin system prior to making a selection of the most suitable type. Systems include both the resin and any hardener, individually and collectively) - **DO NOT** use cotton or leather (which absorb and concentrate the resin), natural rubber (latex), medical or polyethylene gloves (which absorb the resin). - DO NOT use barrier creams containing emulsified fats and oils as these may absorb the resin; silicone-based barrier creams should be reviewed prior to use. Replacement time should be considered when selecting the most appropriate glove. It may be more effective to select a glove with lower chemical resistance but which is replaced frequently than to select a more resistant glove which is reused many times #### **Body protection** # See Other protection below # Other protection #### Overalls. - ► PVC Apron. - ▶ PVC protective suit may be required if exposure severe. - ► Eyewash unit. - ► Ensure there is ready access to a safety shower. #### Recommended material(s) #### GLOVE SELECTION INDEX Glove selection is based on a modified presentation of the: #### "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection: Super Load | Material | СРІ | |-------------------|-----| | BUTYL | A | | VITON | A | | BUTYL/NEOPRENE | С | | NAT+NEOPR+NITRILE | С | | NATURAL RUBBER | С | | NATURAL+NEOPRENE | С | | NEOPRENE | С | | NEOPRENE/NATURAL | С | # Respiratory protection Type AK-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. | Required
Minimum
Protection Factor | Half-Face
Respirator | Full-Face
Respirator | Powered Air
Respirator | |--|-------------------------|-------------------------|-----------------------------| | up to 10 x ES | AK-AUS P2 | - | AK-PAPR-AUS /
Class 1 P2 | | up to 50 x ES | - | AK-AUS /
Class 1 P2 | - | | up to 100 x ES | - | AK-2 P2 | AK-PAPR-2 P2 ^ | ^ - Full-face A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid Chemwatch: 5275-63 Page 8 of 25 Issue Date: 05/10/2018 Version No: 3.1.1.1 Print Date: 07/10/2018 Super Load | NITRILE | С | |----------------|---| | PE/EVAL/PE | С | | PVA | С | | PVC | С | | TEFLON | С | | VITON/NEOPRENE | С | * CPI - Chemwatch Performance Index A: Best Selection - B: Satisfactory; may degrade after 4 hours continuous immersion - C: Poor to Dangerous Choice for other than short term immersion NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - * Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following
long-term or frequent use. A qualified practitioner should be consulted. gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. - The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. - Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used #### **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** #### Information on basic physical and chemical properties | A munorouse | Paste with a perceptible odour; insoluble in water. | | | | |--|--|---|----------------|--| | Appearance | Appearance Faste with a perceptible odour, insoluble in water. | | | | | Physical state | Non Slump Paste | Relative density (Water = 1) | 1.44 | | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Applicable | | | pH (as supplied) | Not Applicable | Decomposition temperature | Not Available | | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Applicable | | | Flash point (°C) | Not Applicable | Taste | Not Available | | | Evaporation rate | Not Available | Explosive properties | Not Available | | | Flammability | Not Applicable | Oxidising properties | Not Available | | | Upper Explosive Limit
(%) | Not Applicable | Surface Tension (dyn/cm or mN/m) | Not Available | | | Lower Explosive Limit
(%) | Not Applicable | Volatile Component
(%vol) | Not Available | | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | | Solubility in water (g/L) | Immiscible | pH as a solution (1%) | Not Applicable | | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | | #### **SECTION 10 STABILITY AND REACTIVITY** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | #### **SECTION 11 TOXICOLOGICAL INFORMATION** #### Information on toxicological effects #### Inhaled Limited evidence or practical experience suggests that the material may produce irritation of the respiratory system, in a significant number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. #### Ingestion The material can produce chemical burns within the oral cavity and gastrointestinal tract following ingestion. The material can produce chemical burns following direct contact with the skin. #### Skin Contact Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. #### Eve The material can produce chemical burns to the eye following direct contact. Vapours or mists may be extremely irritating. On the basis, primarily, of animal experiments, concern has been expressed that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment. Repeated or prolonged exposure to corrosives may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue. Gastrointestinal disturbances may also occur. Chronic exposures may result in dermatitis and/or conjunctivitis. Practical evidence shows that inhalation of the material is capable of inducing a sensitisation reaction in a substantial number of individuals at a greater frequency than would be expected from the response of a normal population. Pulmonary sensitisation, resulting in hyperactive airway dysfunction and pulmonary allergy may be accompanied by fatigue, malaise and aching. Significant symptoms of exposure may persist for extended periods, even after exposure ceases. Symptoms can be activated by a variety of nonspecific environmental stimuli such as automobile exhaust, perfumes and passive smoking. Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals. Exposure to the material may result in a possible risk of irreversible effects. The material may produce mutagenic effects in man. This concern is raised, generally, on the basis of appropriate studies using mammalian somatic cells in vivo. Such findings are often supported by positive results from in vitro mutagenicity studies. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. Bisphenol A diglycidyl ethers (BADGEs) produce sensitisation dermatitis characterised by a papular, vesicular eczema with considerable itching of the back of the hand, the forearm and face and neck. This lesion may persist for 10-14 days after withdrawal from exposure and recur immediately on re-exposure. This dermatitis may persist for longer periods following each exposure but is unlikely to become more intense. Lesions may develop a brownish colour and scaling occurs frequently. Lower molecular weight species produce sensitisation more readily. #### Chronic In mice technical grades of bisphenol A diglycidyl ether produced epidermal tumours and a small increase in the incidence kidney tumours in males and of lymphoreticular/ haematopoietic tumours in females. Subcutaneous injection produced a small number of fibrosarcomas in rats. BADGE is listed as an IARC Group 3 carcinogen, meaning it is "not classifiable as to its carcinogenicity to humans". Concern has been raised over this possible carcinogenicity because BADGE is used in epoxy resins in the lining of some tin cans for foodstuffs, and unreacted BADGE may end up in the contents of those cans. For some reactive diluents, prolonged or repeated skin contact may result in absorption of potentially harmful amounts or allergic skin reactions Exposure to some reactive diluents (notably neopentylglycol diglycidyl ether, CAS RN:17557-23-2) has caused cancer in some animal testing Allergic reactions to benzoic acid have been reported. Of 100 patients with asthma undergoing provocation tests with benzoic acid, 47 showed positive reactions. In another study, of 75 patients with recurrent urticaria (skin eruptions) and angio-oedema (a deep dermal condition characterised by large wheals) of more than 4 months duration, 44 were found to be sensitive to sodium benzoate or p-hydroxybenzoic acid (paraben), alone or in conjunction with aspirin or azo- dyes, or both. In a further work there was no significant objective or subjective skin response to two 500-mg daily doses of benzoic acid or lactic acid in a double blind study of 150 dermatological patients Secondary amines may react in the acid conditions of the stomach with oxidants or preservatives) to form potentially carcinogenic N-nitrosamines. The formation of nitrosamines from such amines has not only been observed in animals models but, at least for certain compounds, in the workplace. The amine-containing substances and end products handled at work can themselves be contaminated to a degree with corresponding nitrosamines. Under conditions encountered in practice nitrosation is to be expected with secondary amines and to a limited extent with primary and tertiary amines. Nitrogen oxides are the most probable nitrosating agents. Nitrosyl chloride, nitrite esters, metal nitrites and nitroso compounds may also be involved. Several factors such as pH, temperature, catalysts and inhibitors influence the extent of nitrosation. Two precautionary measures are therefore necessary when handling amines at the workplace. ▶ Simultaneous exposure to nitrosating agents should be reduced to minimum. This can be out into practice by eliminating #
nitrosating agents or, if they play a role in the actual process, replacing them with substances that do not lead to the Issue Date: 05/10/2018 Print Date: 07/10/2018 - Formation of carcinogenic nitrosamines. In particular the level of nitrogen oxides at the workplace should be monitored and reduced when necessary. - ► The levels of nitrosamines in the workplace and in substances containing amines should be monitored. Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area, Report No. 31, DFG, In animal experiments the oesophagus is shown to be the most important target organ for nitrosamines, independent of the route of application. The mechanism of this organotrophy cannot be explained sufficiently. The high oesophageal epithelium metabolic activation of nitrosamines, together with a comparatively low DNA repair, probably plays the most important role. In addition chronic stress factors, which lead to high stimulation of epithelial turnover, are a pacemaker for malignant progression. In some countries, the traditional consumption of extremely hot drinks leads to constant burns of the oesophagus, which increases the risk. Mate, a non-alcoholic brew, frequently consumed as tea in Uruguay, appears to be a high risk factor for oesophageal cancer All glycidyl ethers show genotoxic potential due their alkylating properties. Those glycidyl ethers that have been investigated in long term studies exhibit more or less marked carcinogenic potential. Alkylating agents may damage the stem cell which acts as the precursor to components of the blood. Loss of the stem cell may result in pancytopenia (a reduction in the number of red and white blood cells and platelets) with a latency period corresponding to the lifetime of the individual blood cells. Granulocytopenia (a reduction in granular leukocytes) develops within days and thrombocytopenia (a disorder involving platelets), within 1-2 weeks, whilst loss of erythrocytes (red blood cells) need months to become clinically manifest. Aplastic anaemia develops due to complete destruction of the stem cells. Glycidyl ethers have been shown to cause allergic contact dermatitis in humans. Glycidyl ethers generally cause skin sensitization in experimental animals. Necrosis of the mucous membranes of the nasal cavities was induced in mice exposed to allyl glycidyl ether. A study of workers with mixed exposures was inconclusive with regard to the effects of specific glycidyl ethers. Phenyl glycidyl ether, but not n-butyl glycidyl ether, induced morphological transformation in mammalian cells in vitro. n-Butyl glycidyl ether induced micronuclei in mice in vivo following intraperitoneal but not oral administration. Phenyl glycidyl ether did not induce micronuclei or chromosomal aberrations in vivo or chromosomal aberrations in animal cells in vitro. Alkyl C12 or C14 glycidyl ether did not induce DNA damage in cultured human cells or mutation in cultured animal cells. Allyl glycidyl ether induced mutation in Drosophila. The glycidyl ethers were generally mutagenic to bacteria Bisphenol F, bisphenol A, fluorine-containing bisphenol A (bisphenol AF), and other diphenylalkanes were found to be oestrogenic in a bioassay with MCF7 human breast cancer cells in culture Bisphenol F (4,4'-dihydroxydiphenylmethane) has been reported to exhibit oestrogen agonistic properties in the uterotrophic assay. Bisphenol F (BPF) is present in the environment and as a contaminant of food. Humans may, therefore, be exposed to BP. BPF has been shown to have genotoxic and endocrine-disruptor properties in a human hepatoma cell line (HepG2), which is a model system for studies of xenobiotic toxicity. BPF was largely metabolised into the corresponding sulfate by the HepG2 cell line. BPF was metabolised into both sulfate and glucuronide by human hepatocytes, but with differences between individuals. The metabolism of BPF in both HepG2 cells and human hepatocytes suggests the existence of a detoxification pathway Bisphenol F was orally administered at doses 0, 20, 100 and 500 mg/kg per day for at least 28 days, but no clear endocrine-mediated changes were detected, and it was concluded to have no endocrine-mediated effects in young adult rats. On the other hand, the main effect of bisphenol F was concluded to be liver toxicity based on clinical biochemical parameters and liver weight, but without histopathological changes. The no-observed-effect level for bisphenol F is concluded to be under 20 mg/kg per day since decreased body weight accompanied by decreased serum total cholesterol, glucose, and albumin values were observed in the female rats given 20 mg/kg per day or higher doses of bisphenol F. Bisphenol A exhibits hormone-like properties that raise concern about its suitability in consumer products and food containers. Bisphenol A is thought to be an endocrine disruptor which can mimic oestrogen and may lead to negative health effects. More specifically, bisphenol A closely mimics the structure and function of the hormone oestradiol with the ability to bind to and activate the same oestrogen receptor as the natural hormone.. Early developmental stages appear to be the period of greatest sensitivity to its effects and some studies have linked prenatal exposure to later physical and neurological difficulties. Regulatory bodies have determined safety levels for humans, but those safety levels are being guestioned or are under review. A 2009 study on Chinese workers in bisphenol A factories found that workers were four times more likely to report erectile dysfunction, reduced sexual desire and overall dissatisfaction with their sex life than workers with no heightened bisphenol A exposure. Bisphenol A workers were also seven times more likely to have ejaculation difficulties. They were also more likely to report reduced sexual function within one year of beginning employment at the factory, and the higher the exposure, the more likely they were to have sexual difficulties. Bisphenol A in weak concentrations is sufficient to produce a negative reaction on the human testicle. The researchers found that a concentration equal to 2 ug/ litre of bisphenol A in the culture medium, a concentration equal to the average concentration generally found in the blood, urine and amniotic fluid of the population, was sufficient to produce the effects. The researchers believe that exposure of pregnant women to bisphenol A may be one of the causes of congenital masculinisation defects of the hypospadia and cryptorchidism types the frequency of which has doubled overall since the 70's. They also suggested that "it is also possible that bisphenol A contributes to a reduction in the production of sperm and the increase in the incidence of testicular cancer in adults that have been observed in recent decades" One review has concluded that obesity may be increased as a function of bisphenol A exposure, which "...merits concern among scientists and public health officials" One study demonstrated that adverse neurological effects occur in non-human primates regularly exposed to bisphenol A at levels equal to the United States Environmental Protection Agency's (EPA) maximum safe dose of 50 ug/kg/day This research found a connection between bisphenol A and interference with brain cell connections vital to memory, learning, A further review concluded that bisphenol-A has been shown to bind to thyroid hormone receptor and perhaps have selective effects on its functions. Carcinogenicity studies have shown increases in leukaemia and testicular interstitial cell tumours in male rats. However, "these studies have not been considered as convincing evidence of a potential cancer risk because of the doubtful statistical significance of the small differences in incidences from controls". Another in vitro study has concluded that bisphenol A is able to induce neoplastic transformation in human breast epithelial cells.[whilst a #### Super Load further study concluded that maternal oral exposure to low concentrations of bisphenol A, during lactation, increases mammary carcinogenesis in a rodent model. In vitro studies have suggested that bisphenol A can promote the growth of neuroblastoma cells and potently promotes invasion and metastasis of neuroblastoma cells. Newborn rats exposed to a low-dose of bisphenol A (10 ug/kg) showed increased prostate cancer susceptibility when adults. At least one study has suggested that bisphenol A suppresses DNA methylation which is involved in epigenetic changes. Bisphenol A is the isopropyl adduct of 4,4'-dihydroxydiphenyl oxide (DHDPO). A series of DHDPO analogues have been investigated as potential oestrogen receptor/anti-tumour drug carriers in the development of a class of therapeutic drugs called "cytostatic hormones". Oestrogenic activity is induced with 1 to 100 mg/kg body weight in animal models. Bisphenol A sealants are frequently used in dentistry for treatment of dental pits and fissures. Samples of saliva collected from dental patients during a 1-hour period following application contain the monomer. A bisphenol-A sealant has been shown to be oestrogenic in vitro; such sealants may represent an additional source of xenoestrogens in humans and may be the cause of additional concerns in children. Concerns have been raised about the possible developmental effects on the foetus/embryo or neonate resulting from the leaching of bisphenol A from epoxy linings in metal cans which come in contact with food-stuffs. Many drugs, including naproxen, salicylic acid, carbamazepine and mefenamic acid can, in vitro, significantly inhibit bisphenol A glucuronidation (detoxification). Solid phenol is highly toxic via ingestion, inhalation and skin contact. Chronic phenol poisoning is very rarely reported, but symptoms include vomiting, difficulty in swallowing, diarrhoea, lack of appetite, headache, fainting, dizziness, dark urine, mental disturbances, and possibly skin rash. Death due to
liver and kidney damage may occur. Repeated exposure of animals to phenol vapour at concentrations ranging from 26 to 52 ppm has produced respiratory, cardiovascular, hepatic, renal and neurologic toxicity. Administration of phenol in the drinking water of mice (2500 ppm for 103 weeks) produced an increased incidence of leukemia and lymphomas. Phenol has been studied in initiation/promotion protocols with a number of polycyclic hydrocarbons and has been shown to have promoting activity in the two-stage skin model Prolonged or repeated exposure to benzyl alcohol may cause allergic contact dermatitis. Prolonged or repeated ingestion may affect behavior/central nervous system with symptoms similar to acute ingestion. It may also affect the liver, kidneys, cardiovascular system, and metabolism (weight loss). Animal studies have shown this compound to cause lung, liver, kidney and CNS disorders. Studies in animals have shown evidence of teratogenicity in the chick embryo. The significance of the information for humans is unknown. Benzyl alcohol showed no evidence of carcinogenic activity in long-term toxicology and carcinogenesis study. | | TOXICITY | IRRITATION | |---|--|------------------------------------| | Super Load | Not Available | Not Available | | | TOXICITY | IRRITATION | | bisphenol A/ diglycidyl ether | dermal (rat) LD50: >1200 mg/kg ^[2] | Eye (rabbit): 100 mg - mild | | polymer, high molecular weight | Oral (rat) LD50: >1000 mg/kg ^[2] | | | | TOXICITY | IRRITATION | | bisphenol F/ epichlorohydrin
copolymer | dermal (rat) LD50: >400 mg/kg ^[2] | Not Available | | coporymen | Oral (rat) LD50: >2000 mg/kg ^[1] | | | | TOXICITY | IRRITATION | | | dermal (rat) LD50: >2000 mg/kg ^[2] | Eye (rabbit): 100 mg - moderate | | 1,6-hexanediol diglycidyl ether | Oral (rat) LD50: 1681 mg/kg ^[1] | Skin (rabbit): slight * | | | | Skin (rabbit):10 mg/24h - moderate | | | TOXICITY | IRRITATION | | isophorone diamine | Oral (rat) LD50: 1030 mg/kg ^[2] | Not Available | | | TOXICITY | IRRITATION | | | Dermal (rabbit) LD50: 2000 mg/kg ^[2] | Eye (rabbit): 0.75 mg open SEVERE | | benzyl alcohol | Inhalation (rat) LC50: >4.178 mg/l/4h ^[2] | Skin (man): 16 mg/48h-mild | | | Oral (rat) LD50: 1230 mg/kg ^[2] | Skin (rabbit):10 mg/24h open-mild | | | TOXICITY | IRRITATION | | diethylenetriamine | Dermal (rabbit) LD50: ~672 mg/kg ^[2] | Skin (rabbit): 10 mg/24h - SEVERE | | | Oral (rat) LD50: =819-1430 mg/kg ^[2] | Skin (rabbit):500 mg open moderate | | | | | Chemwatch: 5275-63 Page 12 of 25 Issue Date: 05/10/2018 Version No: 3.1.1.1 Print Date: 07/10/2018 | dermal (rat) LD50: ~1280 mg/kg ^[2] Inhalation (rat) LC50: >0.125 mg/l/1hr.] ^[2] Oral (rat) LD50: 1200 mg/kg ^[2] | Eye (rabbit): 0.05 mg/24h - SEVERE
Skin (rabbit): 2 mg/24h - SEVERE | |--|--| | | Skin (rabbit): 2 mg/24h - SEVERE | | Oral (rat) LD50: 1200 mg/kg ^[2] | | | | | | TOXICITY | IRRITATION | | dermal (rat) LD50: =525 mg/kg ^[2] | Eye(rabbit): 100 mg rinse - mild | | Inhalation (rat) LC50: 0.316 mg/l/4H ^[2] | Eye(rabbit): 5 mg - SEVERE | | Oral (rat) LD50: 317 mg/kg ^[2] | Skin(rabbit): 500 mg open -SEVERE | | | Skin(rabbit): 500 mg/24hr - SEVERE | | TOXICITY | IRRITATION | | Dermal (rabbit) LD50: 2000 mg/kg ^[2] | Eye (rabbit): 0.05 mg/24h SEVERE | | Inhalation (rat) LC50: 174.800325 mg/l/1hE ^[2] | Skin (rabbit): 0.75 mg/24h SEVERE | | Oral (rat) LD50: >200 mg/kg ^[1] | | | | dermal (rat) LD50: =525 mg/kg ^[2] Inhalation (rat) LC50: 0.316 mg/l/4H ^[2] Oral (rat) LD50: 317 mg/kg ^[2] TOXICITY Dermal (rabbit) LD50: 2000 mg/kg ^[2] Inhalation (rat) LC50: 174.800325 mg/l/1hE ^[2] | Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances In mice, dermal application of bisphenol A diglycidyl ether (BADGE) (1, 10, or 100 mg/kg) for 13 weeks produced mild to moderate chronic active dermatitis. At the high dose, spongiosis and epidermal micro abscess formation were observed. In rats, dermal application of BADGE (10, 100, or 1000 mg/kg) for 13 weeks resulted in a decrease in body weight at the high dose. The no-observable effect level (NOEL) for dermal exposure was 100 mg/kg for both sexes. In a separate study, application of BADGE (same doses) five times per week for ~13 weeks not only caused a decrease in body weight but also produced chronic dermatitis at all dose levels in males and at >100 mg/kg in females (as well as in a satellite group of females given 1000 mg/kg). Reproductive and Developmental Toxicity: BADGE (50, 540, or 750 mg/kg) administered to rats via gayage for 14 weeks (P1) or 12 weeks (P2) produced decreased body weight in all males at the mid dose and in both males and females at the high dose, but had no reproductive effects. The NOEL for reproductive effects was 750 mg/kg. Carcinogenicity: IARC concluded that "there is limited evidence for the carcinogenicity of bisphenol A diglycidyl ether in experimental animals." Its overall evaluation was "Bisphenol A diglycidyl ether is not classifiable as to its carcinogenicity to humans (Group 3). In a lifetime tumourigenicity study in which 90-day-old C3H mice received three dermal applications per week of BADGE (undiluted dose) for 23 months, only one out of 32 animals developed a papilloma after 16 months. A retest, in which skin paintings were done for 27 months, however, produced no tumours (Weil et al., 1963). In another lifetime skin-painting study, BADGE (dose n.p.) was also reported to be noncarcinogenic to the skin of C3H mice; it was, however, weakly carcinogenic to the skin of C57BL/6 mice (Holland et al., 1979; cited by Canter et al., 1986). In a two-year bioassay, female Fisher 344 rats dermally exposed to BADGE (1, 100, or 1000 mg/kg) showed no evidence of dermal carcinogenicity but did have low incidences of tumours in the oral cavity (U.S. EPA, 1997). Genotoxicity: In S. typhimurium strains TA100 and TA1535, BADGE (10-10,000 ug/plate) was mutagenic with and without S9; negative results were obtained in TA98 and TA1537 (Canter et al., 1986; Pullin, 1977). In a spot test, BADGE (0.05 or 10.00 mg) failed to show mutagenicity in strains TA98 and TA100 (Wade et al., 1979). Negative results were also obtained in the body fluid test using urine of female BDF and ICR mice (1000 mg/kg BADGE), the mouse host-mediated assay (1000 mg/kg), micronucleus test (1000 mg/kg), and dominant lethal assay (~3000 mg/kg). Immunotoxicity: Intracutaneous injection of diluted BADGE (0.1 mL) three times per week on alternate days (total of 8 injections) followed by a three-week incubation period and a challenge dose produced sensitisation in 19 of 20 guinea pigs Consumer exposure to BADGE is almost exclusively from migration of BADGE from can coatings into food. Using a worst-case scenario that assumes BADGE migrates at the same level into all types of food, the estimated per capita daily intake for a 60-kg individual is approximately 0.16 ug/kg body weight/day. A review of one- and two-generation reproduction studies and developmental investigations found no evidence of reproductive or endocrine toxicity, the upper ranges of dosing being determined by maternal toxicity. The lack of endocrine toxicity in the reproductive and developmental toxicological tests is supported by negative results from both in vivo and in vitro assays designed specifically to detect oestrogenic and androgenic properties of BADGE. An examination of data from sub-chronic and chronic toxicological studies support a NOAEL of 50 mg/ kg/body weight day from the 90-day study, and a NOAEL of 15 mg/kg body weigh/day (male rats) from the 2-year carcinogenicity study. Both NOAELS are considered appropriate for risk assessment. Comparing the estimated daily human intake of 0.16 ug/kg body weight/day with the NOAELS of 50 and 15 mg/kg body weight/day shows human exposure to BADGE from can coatings is between 250,000 and 100,000-fold lower than the NOAELs from the most **BISPHENOL A/ DIGLYCIDYL ETHER** POLYMER, HIGH MOLECULAR WEIGHT Issue Date: 05/10/2018 Print Date: 07/10/2018 sensitive toxicology tests. These large margins of safety together with lack of reproductive, developmental, endocrine and carcinogenic effects supports the continued use of BADGE for use in articles intended to come into contact with foodstuffs. for RTECS No: SL 6475000: (liquid grade) Equivocal tumourigen by RTECS criteria Somnolence, dyspnea, peritonitis #### **BISPHENOL F/ EPICHLOROHYDRIN** COPOLYMER Data for liquid polymer, ie for molecular weights generally less than 700 CAUTION: Epoxy resin products may contain sensitising glycidyl ethers, even when these are not mentioned in the information given for the product. Limited animal studies have indicated that bisphenol A diglycidyl ethers may be potential carcinogens. [CISDOC Patty] #### 1,6-HEXANEDIOL DIGLYCIDYL ETHER Hexion MSDS #### For isophorone diamine Based on a limited skin irritation study with rabbits and rats, isophorone diamine is deemed to be a strong irritant (duration of the exposure not reported) and corrosive after repeated application. Isophorone diamine is corrosive to the eyes of rabbits when tested according to OECD TG 405. Isophorone diamine was found to induce dermal sensitisation when tested according to OECD TG 406 in guinea pigs. From a number of publications there is evidence that frequent occupational exposure to isophorone diamine may lead to the development of allergic contact dermatitis in humans. No definite conclusion can be currently drawn on respiratory
sensitisation. From two 14-day inhalative exposure studies with rats no NOAEL could be determined. At the first study's LOAEL of 18 mg/m3, degeneration/necrosis in the olfactory epithelium of the nose were observed. Trachea, larynx and lungs were affected at 200 mg/m3 and above (degeneration/necrosis, hyperplasia, squamous metaplasia). At the LOAEL of the follow-up study, i.e. at 2.2 mg/m3, reversible minimal to mild degeneration of respiratory nasal mucosa in the anterior dorsal nose was observed. In a subchronic drinking water study according to OECD TG 408, the administration of 150 mg/kg bw/day led to reduced absolute and relative kidney weights in male and female rats (histopathology being indicative for tubular nephrosis), while 59 mg/kg bw/day (males) and 62 mg/kg bw/day (females) were determined as a NOAEL. Isophorone diamine was not mutagenic in bacteria and mammalian cell systems in vitro (Ames test according to Directive 84/449/EEC B.14 (1984) and HPRT test according to OECD TG 476 (1984)). It did not induce chromosomal aberrations in CHO cells in vitro in a test performed in accordance with OECD TG 473. In vivo mouse micronucleus tests (one performed according to OECD TG 474 (1983) for the induction of micronucleated polychromatic erythrocytes were clearly negative. From all in vitro and in vivo tests performed there is no evidence that isophorone diamine has a mutagenic or clastogenic potential. No studies have been performed on the toxicity of isophorone diamine to reproduction. ### **ISOPHORONE DIAMINE** Data from an oral 90-day study in rats according to OECD TG 408 did not reveal any adverse effects on the male and female reproductive organs. Isophorone diamine did not show any teratogenic or embryofoetotoxic effects in a gavage study with rats performed in accordance with OECD TG 414 (2001) up to and including the highest tested dose level of 250 mg/kg bw/day. The NOAEL for maternal toxicity was 50 mg/kg bw/day, effects at 250 mg/kg bw/day were reduced food consumption and reduced body weight gain. The NOAEL for developmental toxicity is 250 mg/kg bw/day. The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. The material may produce respiratory tract irritation. Symptoms of pulmonary irritation may include coughing, wheezing, laryngitis, shortness of breath, headache, nausea, and a burning sensation. Unlike most organs, the lung can respond to a chemical insult or a chemical agent, by first removing or neutralising the irritant and then repairing the damage (inflammation of the lungs may be a consequence). The repair process (which initially developed to protect mammalian lungs from foreign matter and antigens) may, however, cause further damage to the lungs (fibrosis for example) when activated by hazardous chemicals. Often, this results in an impairment of gas exchange, the primary function of the lungs. Therefore prolonged exposure to respiratory irritants may cause sustained breathing difficulties. The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. #### For benzyl alkyl alcohols: Unlike benzylic alcohols, the beta-hydroxyl group of the members of this cluster is unlikely to undergo phase II metabolic activation. Instead, the beta-hydroxyl group is expected to contribute to detoxification via oxidation to hydrophilic acid. Despite structural similarity to carcinogenic ethyl benzene, only a marginal concern has been assigned to phenethyl alcohol due to limited mechanistic analogy. ### **BENZYL ALCOHOL** Acute toxicity: Benzyl alcohol, benzoic acid and its sodium and potassium salt can be considered as a single category regarding human health, as they are all rapidly metabolised and excreted via a common pathway within 24 hrs. Systemic toxic effects of similar nature (e.g. liver, kidney) were observed. However with benzoic acid and its salts toxic effects are seen at higher doses than with benzyl alcohol. The compounds exhibit low acute toxicity as for the oral and dermal route. The LD50 values are > 2000 mg/kg bw except for benzyl alcohol which needs to be considered as harmful by the oral route in view of an oral LD50 of 1610 mg/kg bw. The 4 hrs inhalation exposure of benzyl alcohol or benzoic acid at 4 and 12 mg/l as aerosol/dust respectively gave no mortality, showing low acute toxicity by inhalation for these Page **14** of **25** Super Load Issue Date: **05/10/2018**Print Date: **07/10/2018** compounds Benzoic acid and benzyl alcohol are slightly irritating to the skin, while sodium benzoate was not skin irritating. No data are available for potassium benzoate but it is also expected not to be skin irritating. Benzoic acid and benzyl alcohol are irritating to the eye and sodium benzoate was only slightly irritating to the eye. No data are available for potassium benzoate but it is expected also to be only slightly irritating to the eye. Sensitisation: The available studies for benzoic acid gave no indication for a sensitising effect in animals, however occasionally very low positive reactions were recorded with humans (dermatological patients) in patch tests. The same occurs for sodium benzoate. It has been suggested that the very low positive reactions are non-immunologic contact urticaria. Benzyl alcohol gave positive and negative results in animals. Benzyl alcohol also demonstrated a maximum incidence of sensitization of only 1% in human patch testing. Over several decades no sensitization with these compounds has been seen among workers. **Repeat dose toxicity:** For benzoic acid repeated dose oral toxicity studies give a NOAEL of 800 mg/kg/day. For the salts values > 1000 mg/kg/day are obtained. At higher doses increased mortality, reduced weight gain, liver and kidney effects were observed. For benzyl alcohol the long-term studies indicate a NOAEL > 400 mg/kg bw/d for rats and > 200 mg/kg bw/d for mice. At higher doses effects on bodyweights, lesions in the brains, thymus, skeletal muscle and kidney were observed. It should be taken into account that administration in these studies was by gavage route, at which saturation of metabolic pathways is likely to occur. **Mutagenicity:** All chemicals showed no mutagenic activity in *in vitro* Ames tests. Various results were obtained with other *in vitro* genotoxicity assays. Sodium benzoate and benzyl alcohol showed no genotoxicity *in vivo*. While some mixed and/or equivocal *in vitro* chromosomal/chromatid responses have been observed, no genotoxicity was observed in the *in vivo* cytogenetic, micronucleus, or other assays. The weight of the evidence of the *in vitro* and *in vivo* genotoxicity data indicates that these chemicals are not mutagenic or clastogenic. They also are not carcinogenic in long-term carcinogenicity studies. In a 4-generation study with benzoic acid no effects on reproduction were seen (NOAEL: 750 mg/kg). No compound related effects on reproductive organs (gross and histopathology examination) could be found in the (sub) chronic studies in rats and mice with benzyl acetate, benzyl alcohol, benzaldehyde, sodium benzoate and supports a non-reprotoxic potential of these compounds. In addition, data from reprotoxicity studies on benzyl acetate (NOAEL >2000 mg/kg bw/d; rats and mice) and benzaldehyde (tested only up to 5 mg/kg bw; rats) support the non-reprotoxicity of benzyl alcohol and benzoic acid and its salts. **Developmental toxicity:** In rats for sodium benzoate dosed via food during the entire gestation developmental effects occurred only in the presence of marked maternal toxicity (reduced food intake and decreased body weight) (NOAEL = 1400 mg/kg bw). For hamster (NOEL: 300 mg/kg bw), rabbit (NOEL: 250 mg/kg bw) and mice (CD-1 mice, NOEL: 175 mg/kg bw) no higher doses (all by gavage) were tested and no maternal toxicity was observed. For benzyl alcohol: NOAEL= 550 mg/kg bw (gavage; CD-1 mice). LOAEL = 750 mg/kg bw (gavage mice). In this study maternal toxicity was observed e.g. increased mortality, reduced body weight and clinical toxicology. Benzyl acetate: NOEL = 500 mg/kg bw (gavage rats). No maternal toxicity was observed. Adverse reactions to fragrances in perfumes and in fragranced cosmetic products include allergic contact dermatitis, irritant contact dermatitis, photosensitivity, immediate contact reactions (contact urticaria), and pigmented contact dermatitis. Airborne and connubial contact dermatitis occur. Intolerance to perfumes, by inhalation, may occur if the perfume contains a sensitising principal. Symptoms may vary from general illness, coughing, phlegm, wheezing, chest-tightness, headache, exertional dyspnoea, acute respiratory illness, hayfever, and other respiratory diseases (including asthma). Perfumes can induce hyper-reactivity of the respiratory tract without producing an IgE-mediated allergy or demonstrable respiratory obstruction. This was shown by placebo-controlled challenges of nine patients to "perfume mix". The same patients were also subject to perfume provocation, with or without a carbon filter mask, to ascertain whether breathing through a filter with active carbon would prevent symptoms. The patients breathed through the mouth, during the provocations, as a nose clamp was used to prevent nasal inhalation. The patient's earlier symptoms were verified; breathing through the carbon filter had no protective effect. The symptoms were not transmitted via the olfactory nerve but they may have been induced by trigeminal reflex via the respiratory tract or by the eyes. Cases of occupational asthma induced by perfume substances such as isoamyl acetate, limonene, cinnamaldehyde
and benzaldehyde, tend to give persistent symptoms even though the exposure is below occupational exposure limits. Inhalation intolerance has also been produced in animals. The emissions of five fragrance products, for one hour, produced various combinations of sensory irritation, pulmonary irritation, decreases in expiratory airflow velocity as well as alterations of the functional observational battery indicative of neurotoxicity in mice. Neurotoxicity was found to be more severe after mice were repeatedly exposed to the fragrance products, being four brands of cologne and one brand of toilet water. Contact allergy to fragrances is relatively common, affecting 1 to 3% of the general population, based on limited testing with eight common fragrance allergens and about 16 % of patients patch tested for suspected allergic contact dermatitis. Contact allergy to fragrance ingredients occurs when an individual has been exposed, on the skin, to a sufficient degree of fragrance contact allergens. Contact allergy is a life-long, specifically altered reactivity in the immune system. This means that once contact allergy is developed, cells in the immune system will be present which can recognise and react towards the allergen. As a consequence, symptoms, i.e. allergic contact dermatitis, may occur upon re-exposure to the fragrance allergen(s) in question. Allergic contact dermatitis is an inflammatory skin disease characterised by erythema, swelling and vesicles in the acute phase. If exposure continues it may develop into a chronic condition with scaling and Page 15 of 25 Super Load Issue Date: **05/10/2018**Print Date: **07/10/2018** painful fissures of the skin. Allergic contact dermatitis to fragrance ingredients is most often caused by cosmetic products and usually involves the face and/or hands. It may affect fitness for work and the quality of life of the individual. Fragrance contact allergy has long been recognised as a frequent and potentially disabling problem. Prevention is possible as it is an environmental disease and if the environment is modified (e.g. by reduced use concentrations of allergens), the disease frequency and severity will decrease Fragrance contact allergy is mostly non-occupational and related to the personal use of cosmetic products. Allergic contact dermatitis can be severe and widespread, with a significant impairment of quality of life and potential consequences for fitness for work. Thus, prevention of contact sensitisation to fragrances, both in terms of primary prevention (avoiding sensitisation) and secondary prevention (avoiding relapses of allergic contact dermatitis in those already sensitised), is an important objective of public health risk management measure. Hands: Contact sensitisation may be the primary cause of hand eczema, or may be a complication of irritant or atopic hand eczema. The number of positive patch tests has been reported to correlate with the duration of hand eczema, indicating that long-standing hand eczema may often be complicated by sensitisation. Fragrance allergy may be a relevant problem in patients with hand eczema; perfumes are present in consumer products to which their hands are exposed. A significant relationship between hand eczema and fragrance contact allergy has been found in some studies based on patients investigated for contact allergy. However, hand eczema is a multi-factorial disease and the clinical significance of fragrance contact allergy in (severe) chronic hand eczema may not be clear. **Axillae Bilateral axillary** (underarm) dermatitis may be caused by perfume in deodorants and, if the reaction is severe, it may spread down the arms and to other areas of the body. In individuals who consulted a dermatologist, a history of such first-time symptoms was significantly related to the later diagnosis of perfume allergy. **Face** Facial eczema is an important manifestation of fragrance allergy from the use of cosmetic products (16). In men, after-shave products can cause an eczematous eruption of the beard area and the adjacent part of the neck and men using wet shaving as opposed to dry have been shown to have an increased risk of of being fragrance allergic. Irritant reactions (including contact urticaria): Irritant effects of some individual fragrance ingredients, e.g. citral are known. Irritant contact dermatitis from perfumes is believed to be common, but there are no existing investigations to substantiate this, Many more people complain about intolerance or rashes to perfumes/perfumed products than are shown to be allergic by testing. This may be due to irritant effects or inadequate diagnostic procedures. Fragrances may cause a dose-related contact urticaria of the non-immunological type (irritant contact urticaria). Cinnamal, cinnamic alcohol, and Myroxylon pereirae are well recognised causes of contact urticaria, but others, including menthol, vanillin and benzaldehyde have also been reported. The reactions to Myroxylon pereirae may be due to cinnamates. A relationship to delayed contact hypersensitivity was suggested, but no significant difference was found between a fragrance-allergic group and a control group in the frequency of immediate reactions to fragrance ingredients in keeping with a nonimmunological basis for the reactions seen. Pigmentary anomalies: The term "pigmented cosmetic dermatitis" was introduced in 1973 for what had previously been known as melanosis faciei feminae when the mechanism (type IV allergy) and causative allergens were clarified. It refers to increased pigmentation, usually on the face/neck, often following sub-clinical contact dermatitis. Many cosmetic ingredients were patch tested at non-irritant concentrations and statistical evaluation showed that a number of fragrance ingredients were associated: jasmine absolute, ylang-ylang oil, cananga oil, benzyl salicylate, hydroxycitronellal, sandalwood oil, geraniol, geranium oil. **Photo-reactions** Musk ambrette produced a considerable number of allergic photocontact reactions (in which UV-light is required) in the 1970s and was later banned from use in the EU. Nowadays, photoallergic contact dermatitis is uncommon. Furocoumarins (psoralens) in some plant-derived fragrance ingredients caused phototoxic reactions with erythema followed by hyperpigmentation resulting in Berloque dermatitis. There are now limits for the amount of furocoumarins in fragrance products. Phototoxic reactions still occur but are rare. **General/respiratory:** Fragrances are volatile and therefore, in addition to skin exposure, a perfume also exposes the eyes and naso-respiratory tract. It is estimated that 2-4% of the adult population is affected by respiratory or eye symptoms by such an exposure. It is known that exposure to fragrances may exacerbate pre-existing asthma. Asthma-like symptoms can be provoked by sensory mechanisms. In an epidemiological investigation, a significant association was found between respiratory complaints related to fragrances and contact allergy to fragrance ingredients, in addition to hand eczema, which were independent risk factors in a multivariate analysis. Fragrance allergens act as haptens, i.e. low molecular weight chemicals that are immunogenic only when attached to a carrier protein. However, not all sensitising fragrance chemicals are directly reactive, but require previous activation. A prehapten is a chemical that itself is non- or low-sensitising, but that is transformed into a hapten outside the skin by simple chemical transformation (air oxidation, photoactivation) and without the requirement of specific enzymatic systems. A prohapten is a chemical that itself is non- or low-sensitising but that is transformed into a hapten in the skin (bioactivation) usually via enzyme catalysis. It is not always possible to know whether a particular allergen that is not directly reactive acts as a prehapten or as a prohapten, or both, because air oxidation and bioactivation can often give the same product (geraniol is an example). Some chemicals might act by all three pathways. #### **Prohaptens** Compounds that are bioactivated in the skin and thereby form haptens are referred to as prohaptens. In the case of prohaptens, the possibility to become activated is inherent to the molecule and activation cannot be avoided by extrinsic measures. Activation processes increase the risk for cross-reactivity between fragrance substances. Crossreactivity has been shown for certain alcohols and their Issue Date: **05/10/2018**Print Date: **07/10/2018** corresponding aldehydes, i.e. between geraniol and geranial (citral) and between cinnamyl alcohol and cinnamal The human skin expresses enzyme systems that are able to metabolise xenobiotics, modifying their chemical structure to increase hydrophilicity and allow elimination from the body. Xenobiotic metabolism can be divided into two phases: phase I and phase II. Phase I transformations are known as activation or functionalisation reactions, which normally introduce or unmask hydrophilic functional groups. If the metabolites are sufficiently polar at this point they will be eliminated. However, many phase I products have to undergo subsequent phase II transformations, i.e. conjugation to make them sufficiently water soluble to be eliminated. Although the purpose of xenobiotic metabolism is detoxification, it can also convert relatively harmless compounds into reactive species. Cutaneous enzymes that catalyse phase I transformations include the cytochrome P450 mixed-function oxidase system, alcohol and aldehyde dehydrogenases, monoamine oxidases, flavin-containing monooxygenases and hydrolytic enzymes. Acyltransferases, glutathione S-transferases, UDP-glucuronosyltransferases and sulfotransferases are examples of phase II enzymes that have been shown to be present in human skin . These enzymes are known to catalyse both activating and deactivating biotransformations, but the influence of the reactions on the
allergenic activity of skin sensitisers has not been studied in detail. Skin sensitising prohaptens can be recognised and grouped into chemical classes based on knowledge of xenobiotic bioactivation reactions, clinical observations and/or in vivo and in vitro studies of sensitisation potential and chemical QSAR prediction: The relationships between molecular structure and reactivity that form the basis for structural alerts are based on well established principles of mechanistic organic chemistry. Examples of structural alerts are aliphatic aldehydes (alerting to the possibility of sensitisation via a Schiff base reaction with protein amino groups), and alpha, beta-unsaturated carbonyl groups, C=C-CO- (alerting to the possibility of sensitisation via Michael addition of protein thiol groups). Prediction of the sensitisation potential of compounds that can act via abiotic or metabolic activation (pre- or prohaptens) is more complex compared to that of compounds that act as direct haptens without any activation. The autoxidation patterns can differ due to differences in the stability of the intermediates formed, e.g. it has been shown that autoxidation of the structural isomers linalool and geraniol results in different major haptens/allergens. Moreover, the complexity of the prediction increases further for those compounds that can act both as pre- and prohaptens. In such cases, the impact on the sensitisation potency depends on the degree of abiotic activation (e.g. autoxidation) in relation to the metabolic activation A member or analogue of a group of benzyl derivatives generally regarded as safe (GRAS) based in part on their self-limiting properties as flavouring substances in food; their rapid absorption. metabolic detoxification, and excretion in humans and other animals, their low level of flavour use, the wide margin of safety between the conservative estimates of intake and the no-observed-adverse effect levels determined from chronic and subchronic studies and the lack of significant genotoxic and mutagenic potential. This evidence of safety is supported by the fact that the intake of benzyl derivatives as natural components of traditional foods is greater than the intake as intentionally added flavouring substances. All members of this group are aromatic primary alcohols, aldehydes, carboxylic acids or their corresponding esters or acetals. The substances in this group: - \cdot contain a benzene ring substituted with a reactive primary oxygenated functional group or can be hydrolysed to such a functional group - the major pathway of metabolic detoxification involves hydrolysis and oxidation to yield the corresponding benzoic acid derivate which is excreted either as the free acid or the glycine conjugate - they show a consistent pattern of toxicity in both short- and long- term studies and - \cdot $\,$ they exhibit no evidence of genotoxicity in standardised batteries of in vitro and in vivo assays. The benzyl derivatives are rapidly absorbed through the gut, metabolised primarily in the liver, and excreted in the urine as glycine conjugates of benzoic acid derivatives. In general, aromatic esters are hydrolysed in vivo through the catalytic activity of carboxylesterases, the most important of which are the A-esterases. Hydrolysis of benzyl and benzoate esters to yield corresponding alcohols and carboxylic acids and hydrolysis of acetals to yield benzaldehyde and simple alcohols have been reported in several experiments. The alcohols and aldehydes are rapidly oxidised to benzoic acid while benzoate esters are hydrolysed to benzoic acid. Flavor and Extract Manufacturers Association (FEMA) The aryl alkyl alcohol (AAA) fragrance ingredients are a diverse group of chemical structures with similar metabolic and toxicity profiles. The AAA fragrances demonstrate low acute and subchronic dermal and oral toxicity. At concentrations likely to be encountered by consumers, AAA fragrance ingredients are non-irritating to the skin. The potential for eye irritation is minimal. With the exception of benzyl alcohol and to a lesser extent phenethyl and 2-phenoxyethyl AAA alcohols, human sensitization studies, diagnostic patch tests and human induction studies, indicate that AAA fragrance ingredients generally have no or low sensitization potential. Available data indicate that the potential for photosensitization is low. NOAELs for maternal and developmental toxicity are far in excess of current human exposure levels. No carcinogenicity in rats or mice was observed in 2-year chronic testing of benzyl alcohol or a-methylbenzyl alcohol; the latter did induce species and gender-specific renal adenomas in male rats at the high dose. There was no to little genotoxicity, mutagenicity, or clastogenicity in the mutagenicity in vitro bacterial assays, and in vitro mammalian cell assays. All in vivo micronucleus assays were Chemwatch: 5275-63 Page 17 of 25 Issue Date: 05/10/2018 Version No: 3.1.1.1 Print Date: 07/10/2018 Super Load negative. It is concluded that these materials would not present a safety concern at current levels of use as fragrance ingredients The Research Institute for Fragrance Materials (RIFM) Expert Panel Handling ethyleneamine products is complicated by their tendency to react with other chemicals, such as carbon dioxide in the air, which results in the formation of solid carbamates. Because of their ability to produce chemical burns, skin rashes, and asthma-like symptoms, ethyleneamines also require substantial care in handling. Higher molecular weight ethyleneamines are often handled at elevated temperatures further increasing the possibility of vapor exposure to these compounds. Because of the fragility of eye tissue, almost any eye contact with any ethyleneamine may cause irreparable damage, even blindness. A single, short exposure to ethyleneamines, may cause severe skin burns, while a single, prolonged exposure may result in the material being absorbed through the skin in harmful amounts. Exposures have caused allergic skin reactions in some individuals. Single dose oral toxicity of ethyleneamines is low. The oral LD50 for rats is in the range of 1000 to 4500 mg/kg for the ethyleneamines. In general, the low-molecular weight polyamines have been positive in the Ames assay, increase sister chromatid exchange in Chinese hamster ovary (CHO) cells, and are positive for unscheduled DNA synthesis although they are negative in the mouse micronucleus assay. It is believed that the positive results are based on its ability to chelate copper #### **DIETHYLENETRIAMINE** #### For alkyl polyamines: The alkyl polyamines cluster consists of organic compounds containing two terminal primary amine groups and at least one secondary amine group. Typically these substances are derivatives of ethylenediamine, propylenediamine or hexanediamine. The molecular weight range for the entire cluster is relatively narrow, ranging from 103 to 232 Acute toxicity of the alkyl polyamines cluster is low to moderate via oral exposure and a moderate to high via dermal exposure. Cluster members have been shown to be eye irritants, skin irritants, and skin sensitisers in experimental animals. Repeated exposure in rats via the oral route indicates a range of toxicity from low to high hazard. Most cluster members gave positive results in tests for potential genotoxicity. Limited carcinogenicity studies on several members of the cluster showed no evidence of carcinogenicity. Unlike aromatic amines, aliphatic amines are not expected to be potential carcinogens because they are not expected to undergo metabolic activation, nor would activated intermediates be stable enough to reach target macromolecules. Polyamines potentiate NMDA induced whole-cell currents in cultured striatal neurons While it is difficult to generalise about the full range of potential health effects posed by exposure to the many different amine compounds, characterised by those used in the manufacture of polyurethane and polyisocyanurate foams, it is agreed that overexposure to the majority of these materials may cause adverse health effects. - ▶ Many amine-based compounds can induce histamine liberation, which, in turn, can trigger allergic and other physiological effects, including bronchoconstriction or bronchial asthma and rhinitis. - ▶ Systemic symptoms include headache, nausea, faintness, anxiety, a decrease in blood pressure, tachycardia (rapid heartbeat), itching, erythema (reddening of the skin), urticaria (hives), and facial edema (swelling). Systemic effects (those affecting the body) that are related to the pharmacological action of amines are usually transient. Typically, there are four routes of possible or potential exposure: inhalation, skin contact, eye contact, and ingestion. # Inhalation: Inhalation of vapors may, depending upon the physical and chemical properties of the specific product and the degree and length of exposure, result in moderate to severe irritation of the tissues of the nose and throat and can irritate the lungs. Products with higher vapour pressures have a greater potential for higher airborne concentrations. This increases the probability of worker exposure. Higher concentrations of certain amines can produce severe respiratory irritation, characterised by nasal discharge, coughing, difficulty in breathing, and chest pains. Chronic exposure via inhalation may cause headache, nausea, vomiting, drowsiness, sore throat, bronchopneumonia, and possible lung damage. Also, repeated and/or prolonged exposure to some amines may result in liver disorders, jaundice, and liver enlargement. Some amines have been shown to cause kidney, blood, and central nervous system disorders in laboratory animal studies. While most polyurethane amine catalysts are not sensitisers, some certain individuals may also become sensitized to amines and may experience respiratory distress, including asthma-like attacks, whenever they are subsequently exposed to
even very small amounts of vapor. Once sensitised, these individuals must avoid any further exposure to amines. Although chronic or repeated inhalation of vapor concentrations below hazardous or recommended exposure limits should not ordinarily affect healthy individuals, chronic overexposure may lead to permanent pulmonary injury, including a reduction in lung function, breathlessness, chronic bronchitis, and immunologic lung disease. Inhalation hazards are increased when exposure to amine catalysts occurs in situations that produce aerosols, mists, or heated vapors. Such situations include leaks in fitting or transfer lines. Medical conditions generally aggravated by inhalation exposure include asthma, bronchitis, and emphysema. #### Skin Contact: Skin contact with amine catalysts poses a number of concerns. Direct skin contact can cause moderate TRIS[(DIMETHYLAMINO)METHYL]PHENOL Chemwatch: **5275-63**Version No: **3.1.1.1** Page 18 of 25 Super Load Issue Date: **05/10/2018**Print Date: **07/10/2018** to severe irritation and injury-i.e., from simple redness and swelling to painful blistering, ulceration, and chemical burns. Repeated or prolonged exposure may also result in severe cumulative dermatitis. Skin contact with some amines may result in allergic sensitisation. Sensitised persons should avoid all contact with amine catalysts. Systemic effects resulting from the absorption of the amines through skin exposure may include headaches, nausea, faintness, anxiety, decrease in blood pressure, reddening of the skin, hives, and facial swelling. These symptoms may be related to the pharmacological action of the amines, and they are usually transient. #### **Eve Contact:** Amine catalysts are alkaline in nature and their vapours are irritating to the eyes, even at low concentrations. Direct contact with the liquid amine may cause severe irritation and tissue injury, and the "burning" may lead to blindness. (Contact with solid products may result in mechanical irritation, pain, and corneal injury.) Exposed persons may experience excessive tearing, burning, conjunctivitis, and corneal swelling. The corneal swelling may manifest itself in visual disturbances such as blurred or "foggy" vision with a blue tint ("blue haze") and sometimes a halo phenomenon around lights. These symptoms are transient and usually disappear when exposure ceases. Some individuals may experience this effect even when exposed to concentrations below doses that ordinarily cause respiratory irritation. #### Ingestion: The oral toxicity of amine catalysts varies from moderately to very toxic. Some amines can cause severe irritation, ulceration, or burns of the mouth, throat, esophagus, and gastrointestinal tract. Material aspirated (due to vomiting) can damage the bronchial tubes and the lungs. Affected persons also may experience pain in the chest or abdomen, nausea, bleeding of the throat and the gastrointestinal tract, diarrhea, dizziness, drowsiness, thirst, circulatory collapse, coma, and even death. Polyurethane Amine Catalysts: Guidelines for Safe Handling and Disposal; Technical Bulletin June 2000 #### Alliance for Polyurethanes Industry #### PHENOL The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing. Allergic reactions which develop in the respiratory passages as bronchial asthma or rhinoconjunctivitis, are mostly the result of reactions of the allergen with specific antibodies of the IgE class and belong in their reaction rates to the manifestation of the immediate type. In addition to the allergen-specific potential for causing respiratory sensitisation, the amount of the allergen, the exposure period and the genetically determined disposition of the exposed person are likely to be decisive. Factors which increase the sensitivity of the mucosa may play a role in predisposing a person to allergy. They may be genetically determined or acquired, for example, during infections or exposure to irritant substances. Immunologically the low molecular weight substances become complete allergens in the organism either by binding to peptides or proteins (haptens) or after metabolism (prohaptens). Particular attention is drawn to so-called atopic diathesis which is characterised by an increased susceptibility to allergic rhinitis, allergic bronchial asthma and atopic eczema (neurodermatitis) which is associated with increased IgE synthesis. Exogenous allergic alveolitis is induced essentially by allergen specific immune-complexes of the IgG type; cell-mediated reactions (T lymphocytes) may be involved. Such allergy is of the delayed type with onset up to four hours following exposure. For benzene-1,3-dimethanamine (m-xylene-alpha,alpha'- diamine) The toxicity via oral administration and inhalation was tissue damage in the digestive and respiratory organs, respectively, which are the first contact sites. The chemical is corrosive to rat and mouse skin and a sensitiser in the guinea pig maximisation test. # BENZENE-1,3-DIMETHANAMINE In the 28-day repeated dose toxicity study [OECD TG 407], the chemical was given to rats by gavage at doses of 0, 10, 40, 150 and 600 mg/kg b.w/day. One male and four females died, and salivation, low locomotor activity and piloerection were noted in the 600 mg/kg group. Furthermore, ulceration, acanthosis with hyperkeratosis and submucosal inflammation were observed in the forestomach. No adverse effects were observed in the 150 mg/kg and the lower dose groups. A reproductive /developmental toxicity screening test [OECD TG 421] of rats by gavage at 50, 150 and 450 mg/kg b.w/day for at least 41 days resulted in death in one male in the 150 mg/kg group, and three males and one female in the 450 mg/kg group. In almost all 450 mg/kg animals, the same histopathological changes as the above 28-day study were observed in the forestomach. No adverse effects were found at 50 mg/kg b.w/day. Based on this information, the NOAEL for repeated dose toxicity is considered to be 50 mg/kg b.w/day. In the above reproductive/developmental toxicity screening test [OECD TG 421] the substance was administered from 14 days before mating to 20 days after mating in males and to day 3 of lactation in females. No adverse effects were observed in terms of copulation, fertility, delivery and nursing of parents, and the viability, body weight and morphology of offspring. The NOAEL for reproductive/developmental toxicity (F1 offspring) was 450 mg/kg b.w/day. The chemical was not mutagenic in bacteria [OECD TG 471 & 472]. It induced neither chromosomal aberrations in mammalian cells *in vitro* [OECD TG 473] nor micronuclei in mouse bone marrow *in vivo* [OECD TG 474]. In clinical observation of workers during the manufacturing process, the chemical appears to act as a Page 19 of 25 Issue Date: **05/10/2018**Print Date: **07/10/2018** Super Load gastrointestinal irritant. It has also been shown to cause contact sensitisation reactions in workers at concentrations equal to and below 0.1 mg/m3 BISPHENOL A/ DIGLYCIDYL ETHER POLYMER, HIGH MOLECULAR WEIGHT & BISPHENOL F/ EPICHLOROHYDRIN COPOLYMER & 1,6-HEXANEDIOL DIGLYCIDYL ETHER & ISOPHORONE DIAMINE & BENZYL ALCOHOL & DIETHYLENETRIAMINE & BENZENE1,3-DIMETHANAMINE The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. BISPHENOL A/ DIGLYCIDYL ETHER POLYMER, HIGH MOLECULAR WEIGHT & BISPHENOL F/ EPICHLOROHYDRIN COPOLYMER The chemical structure of hydroxylated diphenylalkanes or bisphenols consists of two phenolic rings joined together through a bridging carbon. This class of endocrine disruptors that mimic oestrogens is widely used in industry, particularly in plastics Bisphenol A (BPA) and some related compounds exhibit oestrogenic activity in human breast cancer cell Bisphenol A (BPA) and some related compounds exhibit oestrogenic activity in human breast cancer cell line MCF-7, but there were remarkable differences in activity. Several derivatives of BPA exhibited significant thyroid hormonal activity towards rat pituitary cell line GH3, which releases growth hormone in a thyroid hormone-dependent manner. However, BPA and several other derivatives did not show such activity. Results suggest that the 4-hydroxyl group of the A-phenyl ring and the B-phenyl ring of BPA derivatives are required for these hormonal activities, and substituents at the 3,5-positions of the phenyl rings and the bridging alkyl moiety markedly influence the activities. Bisphenols promoted cell proliferation and increased the synthesis and secretion of cell type-specific proteins. When ranked by proliferative potency, the longer the alkyl substituent at the bridging carbon, the lower the concentration needed for maximal cell yield; the most active compound contained two propyl chains at the bridging carbon. Bisphenols with two hydroxyl groups in the para position and an angular configuration are suitable for appropriate hydrogen bonding to the acceptor site of the oestrogen receptor. BISPHENOL A/ DIGLYCIDYL ETHER POLYMER, HIGH
MOLECULAR WEIGHT & DIETHYLENETRIAMINE & 2,4,6TRIS[(DIMETHYLAMINO)METHYL]PHENOL & PHENOL & BENZENE1,3-DIMETHANAMINE The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. BISPHENOL A/ DIGLYCIDYL ETHER POLYMER, HIGH MOLECULAR WEIGHT & BISPHENOL F/ EPICHLOROHYDRIN COPOLYMER & 1,6-HEXANEDIOL DIGLYCIDYL ETHER & BENZYL ALCOHOL The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. BISPHENOL F/ EPICHLOROHYDRIN COPOLYMER & 2,4,6-TRIS[(DIMETHYLAMINO)METHYL]PHENOL No significant acute toxicological data identified in literature search. BISPHENOL F/ EPICHLOROHYDRIN COPOLYMER & 1,6-HEXANEDIOL DIGLYCIDYL ETHER The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. 1,6-HEXANEDIOL DIGLYCIDYL ETHER & ISOPHORONE DIAMINE & DIETHYLENETRIAMINE & 2,4,6-TRIS[(DIMETHYLAMINO)METHYL]PHENOL & PHENOL & BENZENE-1,3-DIMETHANAMINE Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production. DIETHYLENETRIAMINE & 2,4,6TRIS[(DIMETHYLAMINO)METHYL]PHENOL & PHENOL & BENZENE1.3-DIMETHANAMINE The material may produce severe skin irritation after prolonged or repeated exposure, and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) thickening of the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. Prolonged contact is unlikely, given the severity of response, but repeated exposures may produce severe ulceration. Acute Toxicity Carcinogenicity Skin Irritation/Corrosion Reproductivity Page 20 of 25 Super Load Issue Date: **05/10/2018** Print Date: **07/10/2018** | Serious Eye
Damage/Irritation | 0 | STOT - Single Exposure | 0 | |-----------------------------------|----------|-----------------------------|---| | Respiratory or Skin sensitisation | ✓ | STOT - Repeated
Exposure | 0 | | Mutagenicity | → | Aspiration Hazard | 0 | Legend: - 🗶 Data available but does not fill the criteria for classification - ✓ Data available to make classification - – Data Not Available to make classification # **SECTION 12 ECOLOGICAL INFORMATION** # **Toxicity** | <u> </u> | | | | | | |---|------------------|--------------------|-------------------------------|------------------|------------------| | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | Super Load | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | bisphenol A/ diglycidyl ether
polymer, high molecular weight | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | bisphenol F/ epichlorohydrin | LC50 | 96 | Fish | 0.55mg/L | 2 | | copolymer | EC50 | 48 | Crustacea | 1.6mg/L | 2 | | | EC50 | 72 | Algae or other aquatic plants | >1.8mg/L | 2 | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | 1,6-hexanediol diglycidyl ether | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | isophorone diamine | LC50 | 96 | Fish | =70mg/L | 1 | | | EC50 | 48 | Crustacea | 17.4mg/L | 4 | | | EC50 | 72 | Algae or other aquatic plants | =37mg/L | 1 | | | EC10 | 72 | Algae or other aquatic plants | =3.1mg/L | 1 | | | NOEC | 72 | Algae or other aquatic plants | =1.5mg/L | 1 | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | benzyl alcohol | LC50 | 96 | Fish | 10mg/L | 4 | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | | LC50 | 96 | Fish | 1014mg/L | 4 | | | EC50 | 48 | Crustacea | =16mg/L | 1 | | diethylenetriamine | EC50 | 96 | Algae or other aquatic plants | 345.6mg/L | 4 | | | EC0 | 48 | Crustacea | =2mg/L | 1 | | | NOEC | 504 | Crustacea | =5.6mg/L | 1 | | 2,4,6- | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | tris[(dimethylamino)methyl]phenol | EC50 | 72 | Algae or other aquatic plants | 2.8mg/L | 2 | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | | LC50 | 96 | Fish | 0.00175mg/L | 4 | | | EC50 | 48 | Crustacea | =3.1mg/L | 1 | | phenol | EC50 | 96 | Algae or other aquatic plants | 0.0611mg/L | 4 | | | BCF | 24 | Fish | 60mg/L | 4 | | | EC10 | 0.5 | Algae or other aquatic plants | 0.076mg/L | 4 | | | NOEC | 144 | Crustacea | 0.01mg/L | 4 | Issue Date: **05/10/2018** Print Date: **07/10/2018** benzene-1,3-dimethanamine | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | |------------------|--------------------|---------------|------------------|------------------| | Not
Available | Not Available | Not Available | Not
Available | Not
Available | Legend: Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. DO NOT discharge into sewer or waterways. #### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |---|---------------------------|-----------------------------| | isophorone diamine | HIGH | HIGH | | benzyl alcohol | LOW | LOW | | diethylenetriamine | LOW | LOW | | 2,4,6-
tris[(dimethylamino)methyl]phenol | HIGH | HIGH | | phenol | LOW (Half-life = 10 days) | LOW (Half-life = 0.95 days) | | benzene-1,3-dimethanamine | HIGH | HIGH | #### **Bioaccumulative potential** | Ingredient | Bioaccumulation | |---|----------------------| | isophorone diamine | LOW (BCF = 3.4) | | benzyl alcohol | LOW (LogKOW = 1.1) | | diethylenetriamine | LOW (BCF = 1.7) | | 2,4,6-
tris[(dimethylamino)methyl]phenol | LOW (LogKOW = 0.773) | | phenol | LOW (BCF = 17.5) | | benzene-1,3-dimethanamine | LOW (BCF = 2.7) | ### Mobility in soil | Ingredient | Mobility | |---|-------------------| | isophorone diamine | LOW (KOC = 340.4) | | benzyl alcohol | LOW (KOC = 15.66) | | diethylenetriamine | LOW (KOC = 87.53) | | 2,4,6-
tris[(dimethylamino)methyl]phenol | LOW (KOC = 15130) | | phenol | LOW (KOC = 268) | | benzene-1,3-dimethanamine | LOW (KOC = 914.6) | #### **SECTION 13 DISPOSAL CONSIDERATIONS** disposal #### Waste treatment methods Product / Packaging - ► Containers may still present a chemical hazard/ danger when empty. - ► Return to supplier for reuse/ recycling if possible. #### Otherwise - If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. - ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product. - ▶ DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. - ► Recycle wherever possible. - ▶ Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no #### Continued... - suitable treatment or disposal facility can be identified. ► Treat and neutralise at an approved treatment plant. Treatment should involve: Mixing or slurrying in water; Neutralisation followed by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material) - ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. # **SECTION 14 TRANSPORT INFORMATION** # **Labels Required** # **Marine Pollutant** **HAZCHEM** # Land transport (ADG) | UN number | 3259 |
------------------------------|--| | UN proper shipping name | AMINES, SOLID, CORROSIVE, N.O.S. or POLYAMINES, SOLID, CORROSIVE, N.O.S. (contains isophorone diamine) | | Transport hazard class(es) | Class 8 Subrisk Not Applicable | | Packing group | Ш | | Environmental hazard | Environmentally hazardous | | Special precautions for user | Special provisions 274 Limited quantity 1 kg | # Air transport (ICAO-IATA / DGR) | UN number | 3259 | | | |-------------------------------|--|---------|--| | UN proper shipping name | Polyamines, solid, corrosive, n.o.s. * (contains isophorone diamine); Amines, solid, corrosive, n.o.s. * (contains isophorone diamine) | | | | Transport hazard
class(es) | ICAO/IATA Class 8 ICAO / IATA Subrisk Not Applicable ERG Code 8L | | | | Packing group | II | | | | Environmental hazard | Environmentally hazardous | | | | | Special provisions | A3 A803 | | | | Cargo Only Packing Instructions | 863 | | | | Cargo Only Maximum Qty / Pack | 50 kg | | | Special precautions for user | Passenger and Cargo Packing Instructions | 859 | | | usei | Passenger and Cargo Maximum Qty / Pack | 15 kg | | | | Passenger and Cargo Limited Quantity Packing Instructions | Y844 | | | | Passenger and Cargo Limited Maximum Qty / Pack | 5 kg | | # Sea transport (IMDG-Code / GGVSee) | UN number | 3259 | |--------------------|--| | UN proper shipping | AMINES, SOLID, CORROSIVE, N.O.S. or POLYAMINES, SOLID, CORROSIVE, N.O.S. (contains isophorone diamine) | | name | AWINES, SOCIE, CONNOCIVE, N.C.S. OF GETAWINES, SOCIE, CONNOCIVE, N.C.S. (contains isophicine diamine) | Super Load | Transport hazard
class(es) | IMDG Class 8 IMDG Subrisk Not Applicable | |-------------------------------|---| | Packing group | II | | Environmental hazard | Marine Pollutant | | Special precautions for user | EMS Number F-A , S-B Special provisions 274 Limited Quantities 1 kg | #### Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable #### SECTION 15 REGULATORY INFORMATION #### Safety, health and environmental regulations / legislation specific for the substance or mixture # BISPHENOL A/ DIGLYCIDYL ETHER POLYMER, HIGH MOLECULAR WEIGHT(25068-38-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Hazardous Chemical Information System (HCIS) - Hazardous Australia Standard for the Uniform Scheduling of Medicines and Poisons Chemicals Australia Inventory of Chemical Substances (AICS) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix E (Part 2) (SUSMP) - Appendix F (Part 3) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 2 Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 #### BISPHENOL F/ EPICHLOROHYDRIN COPOLYMER(9003-36-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Inventory of Chemical Substances (AICS) #### 1,6-HEXANEDIOL DIGLYCIDYL ETHER(16096-31-4) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Inventory of Chemical Substances (AICS) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix E (Part 2) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix F (Part 3) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 #### ISOPHORONE DIAMINE(2855-13-2) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Inventory of Chemical Substances (AICS) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix E (Part 2) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 # BENZYL ALCOHOL(100-51-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Inventory of Chemical Substances (AICS) #### DIETHYLENETRIAMINE(111-40-0) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Exposure Standards Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Inventory of Chemical Substances (AICS) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix F (Part 3) Australia Standard for the Uniform Scheduling of Medicines and Poisons Australia Inventory of Chemical Substances (AICS) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix E (Part 2) (SUSMP) - Schedule 10 / Appendix C Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 # 2,4,6-TRIS[(DIMETHYLAMINO)METHYL]PHENOL(90-72-2) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Inventory of Chemical Substances (AICS) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix F (Part 3) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 2 #### PHENOL(108-95-2) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Exposure Standards Australia Standard for the Uniform Scheduling of Medicines and Poisons Australia Hazardous Chemical Information System (HCIS) - Hazardous (SUSMP) - Schedule 2 Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 4 Australia Inventory of Chemical Substances (AICS) Australia Standard for the Uniform Scheduling of Medicines and Poisons Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 (SUSMP) - Appendix E (Part 2) Australia Standard for the Uniform Scheduling of Medicines and Poisons Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6 (SUSMP) - Appendix F (Part 3) International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs # BENZENE-1,3-DIMETHANAMINE(1477-55-0) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Exposure Standards Australia Inventory of Chemical Substances (AICS) #### **National Inventory Status** | National Inventory | Status | |----------------------------------|---| | Australia - AICS | Υ | | Canada - DSL | Υ | | Canada - NDSL | N (benzyl alcohol; phenol; bisphenol A/ diglycidyl ether polymer, high molecular weight; bisphenol F/ epichlorohydrin copolymer; 2,4,6-tris[(dimethylamino)methyl]phenol; 1,6-hexanediol diglycidyl ether; isophorone diamine; diethylenetriamine; benzene-1,3-dimethanamine) | | China - IECSC | Υ | | Europe - EINEC / ELINCS /
NLP | Υ | | Japan - ENCS | N (bisphenol A/ diglycidyl ether polymer, high molecular weight; bisphenol F/ epichlorohydrin copolymer) | | Korea - KECI | Υ | | New Zealand - NZIoC | Υ | | Philippines - PICCS | Υ | | USA - TSCA | Υ | | Legend: | Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | #### **SECTION 16 OTHER INFORMATION** | Revision Date | 05/10/2018 | |---------------|------------| | Initial Date | 03/10/2017 | #### Other information #### Ingredients with multiple cas numbers | Name | CAS No | |---|-----------------------------------| | bisphenol F/
epichlorohydrin copolymer | 55492-52-9, 58421-55-9, 9003-36-5 | Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. # **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value Chemwatch: 5275-63 Page **25** of **25** Version No: 3.1.1.1 Super Load Issue Date: 05/10/2018 Print Date: 07/10/2018 LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.