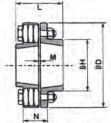
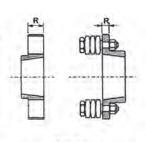
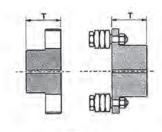

Industrial World Cone Ring Couplings are based on a time proven design. The coupling consists of two flanges interlocked with a number of elements, depending on the coupling size.


The Cone Rings Couplings unique flexible element comprises tapered rubber rings mounted on steel pins. The rubber rings absorb commonly encountered misalignment, shock and vibration.


The Cone Ring Coupling is as popular as ever for its ease of maintenance. No Lubrication is required. The Pin and Rubber design ensures trouble free maintenance, as they can be removed and changed without the need to take the coupling off the shafts.


The flanges are high-grade cast iron; the pins are hexagonal steel bar; and the rings are synthetic rubber.

TYPICAL TAPERLOCK
KXT ASSEMBLY

TAPERLOCK
KXT BUSH HALF KXT PIN HALF

PILOT BORE
KX BUSH HALF KX PIN HALF

Size	No. of Pins	Pin/ Rubber Size	Max. Bore PB/ Bush Size		D	н		L	M	R		Т		Kg	
	(Rubbers)	(D.Brown)	Pin Half	Bush Half		Pin Half	Bush Half			Pin Half	Bush Half	Pin Half	Bush Half	Pin Half	Bush Half
KX020	6 (18)	1 ((GC3/4"-3)	28	20	88	35	44		6	12	23	53	33	OA	OA
KX030	4 (12)	2 (GC 1"-3)	38	32	127	64	58	85	3	12	26	4	1	1.8	2.5
KX038	6 (18)	2 (GC 1"-3)	42	38	132	72	64	99	3	12	26	4	8	2.1	2.3
KX042 KXT042	8 (24)	2 (GC 1"-3)	48 1610	42 1215	146	83	78	115 69.5	3	12	26	5 28.4	6 38.1	3.0 1.8	3.2 2.3
KX048 KXT048	6 (18)	3 (GC 1 3/4"-3)	55 2012	48 1615	171	90	82	90 82	3	17	33	6 35	1 38.1	4.9 3.6	5.0 4.6
KX058 KXT058	8 (24)	3 (GC 1 3/4"-3)	65 2517	58 2012	193	106	98	139 82.3	3	17	33	47.5	8 31.8	5.1 3.8	5.9 5.6
KX070 KXT070	10 (30)	3 (GC 1 3/4"-3)	75 3020	70 2525	216	128	117	155 121.5	3	17	33	7 55	6 63.5	9.2 6.1	9.0 7.6
KX075	8 (32)	4 (GC 2 3/4"-3)	80	75	254	127	127	179	3	30	56	88		16.5	16.9
KX085 KXT085	10 (40)	4 (GC 2 3/4"-3)	105 3535	85 3030	279	166	148	203 172.2	3	30	56	93	76.2	22.4 17.1	21.5 19.6
KX105 KXT105	12 (48)	4 (GC 2 3/4"-3)	120 4040	85 3535	330	202	180	237 197.5	3	30	56	1° 105.6	17 88.9	36.3 24.5	35.0 27.5
KX120 KXT120	10 (40)	5 (GC 4 1/4"-3)	130 4040	120 4040	370	232	206	270 217.2	6	46	76	13 105.6	32 105.6	56.1 39.5	51.0 40.5
KX135 KXT135	12 (48)	5 (GC 4 1/4"-3)	135 4545	135 4545	419	240	230	300 239.6	6	46	76	147 119.3 114.3		70.0 52.8	71.0 56.8
KX150 KXT150	14 (56)	5 (GC 4 1/4"-3)	150 5050	150 5050	457	160	256	336 265	6	46	76	16 132	55 127	88.6 66.8	93.0 72.8
KX170	10 (40)	6 (GC 6-1/4"-3)	190	170	533	320	292		6	63	92	18	38	305	
							_				ure that th				

Cone Ring Coupling

	Power Ratings (Kw @)										
Size	100 rpm	720 rpm	720 rpm 960 rpm		2880 rpm	Max .rpm	Nominal Torque (Nm)				
020	0.55	3.96	5.28	7.92	15.84	6500	53				
030	1.16	8.4	11.1	16.7	33.4	4600	110				
038	1.87	13.5	18.0	26.9	53.9	4400	175				
042	2.84	20.4	27.3	40.9	81.8	4000	265				
048	4.93	35.5	47.3	71.0	142.0	3400	465				
058	7.54	54.3	72.4	108.6	217.2	3020	720				
070	10.70	77.0	102.7	154.1	_	2700	1020				
075	25.7	185.0	246.7	370.1	_	2300	2450				
085	35.5	255.6	340.8	511.2	-	2090	3390				
105	53	382	509	763	-	1760	5080				
120	90	648	864	1296	-	1570	8474				
135	122	878	1171	_	-	1390	11520				
150	159	1145	1526	-	-	1280	15140				
170	246	1771	2362			1090	23500				

Selection Procedure

- 1. From the service factors table (below) determine the service factor
- 2. Calculate the Design Power by multiplying the Absorbed Power of the driven machine by the Service Factor.
- 3. Determine the size of coupling required by matching the design power to a power rating that matches or exceeds the Design Power.

The Pin Half is normally mounted on the drive shaft.

Duty	Electric Motors
Uniform	1.0
Light	1.5
Moderate	2.0
Heavy	2.5
Severe	3.0

