SoftShield Hand Sanitiser # **Integra Industries Limited** Part Number: Not Available Version No: 2.6 Safety Data Sheet according to the Health and Safety at Work (Hazardous Substances) Regulations 2017 Issue Date: **07/03/2025** Print Date: **07/03/2025** L.GHS.NZL.EN # SECTION 1 Identification of the substance / mixture and of the company / undertaking # **Product Identifier** | Product name | SoftShield Hand Sanitiser | | |----------------------------------|--|--| | Synonyms | Not Available | | | Proper shipping name | ETHANOL SOLUTION (ETHYL ALCOHOL SOLUTION); ETHANOL SOLUTION (ETHYL ALCOHOL SOLUTION) | | | Other means of
identification | Not Available | | # Relevant identified uses of the substance or mixture and uses advised against | Relevant identified uses | Sanitizing hands | |--------------------------|------------------| |--------------------------|------------------| # Details of the manufacturer or supplier of the safety data sheet | Registered company name | Integra Industries Limited | | |-------------------------|--|--| | Address | 21A Grosvenor St Kensington Dunedin 9011 New Zealand | | | Telephone | 03 455 6805 | | | Fax | Not Available | | | Website | www.integraindustries.co.nz | | | Email | sales@integraindustries.co.nz | | # **Emergency telephone number** | Association / Organisation | Poisons Information Centre | |-------------------------------------|----------------------------| | Emergency telephone number(s) | 0800 764 766 | | Other emergency telephone number(s) | Not Available | # **SECTION 2 Hazards identification** # Classification of the substance or mixture | Classification [1] Flammable Liquids Category 2, Flammable Solids Category 1, Skin Corrosion/Irritation Category 2, Serious Eye Dam Irritation Category 2, Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3, Specific Organ Toxicity - Single Exposure (Narcotic Effects) Category 3 | | | |---|---|--| | Legend: 1. Classification by vendor; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | | | | Determined by using
GHS/HSNO criteria | 3 1B 4 1 1A 6 3A 6 4A 6 9B (narcotic effects) 6 1E (respiratory fract irritant) | | # Label elements Hazard pictogram(s) Part Number: Not Available Page 2 of 20 Version No: 2.6 SoftShield Hand Sanitiser # Hazard statement(s) | H225 | Highly flammable liquid and vapour. | |------|-------------------------------------| | H228 | Flammable solid. | | H315 | Causes skin irritation. | | H319 | Causes serious eye irritation. | | H335 | May cause respiratory irritation. | | H336 | May cause drowsiness or dizziness. | Issue Date: 07/03/2025 Print Date: 07/03/2025 # Precautionary statement(s) Prevention | P210 | Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. | |------|--| | P271 | Use only outdoors or in a well-ventilated area. | | P240 | Ground and bond container and receiving equipment. | | P241 | Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment. | | P242 | Use non-sparking tools. | | P243 | Take action to prevent static discharges. | | P261 | Avoid breathing dust/fumes. | | P280 | Wear protective gloves, protective clothing, eye protection and face protection. | | P264 | Wash all exposed external body areas thoroughly after handling. | | | | # Precautionary statement(s) Response | P370+P378 | In case of fire: Use alcohol resistant foam or normal protein foam to extinguish. | | | |----------------|--|--|--| | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | | | P312 | Call a POISON CENTER/doctor/physician/first aider/if you feel unwell. | | | | P337+P313 | P313 If eye irritation persists: Get medical advice/attention. | | | | P302+P352 | IF ON SKIN: Wash with plenty of water. | | | | P303+P361+P353 | IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower]. | | | | P304+P340 | IF INHALED: Remove person to fresh air and keep comfortable for breathing. | | | | P332+P313 | P332+P313 If skin irritation occurs: Get medical advice/attention. | | | | P362+P364 | P362+P364 Take off contaminated clothing and wash it before reuse. | | | # Precautionary statement(s) Storage | P403+P235 | Store in a well-ventilated place. Keep cool. | | |-----------|--|--| | P405 | Store locked up. | | # Precautionary statement(s) Disposal | P501 | Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. | |------|--| |------|--| # **SECTION 3 Composition / information on ingredients** # **Substances** See section below for composition of Mixtures # Mixtures | CAS No | %[weight] | Name | |--|-----------|---| | 64-17-5. | 58 | ethanol, denatured | | Not Available | .25 | acrylates/ C10-30-alkyl acrylate crosspolymer | | 102-71-6 | .07 | <u>triethanolamine</u> | | Legend: 1. Classification by vendor; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available | | | # **SECTION 4 First aid measures** # Description of first aid measures | Eye Contact | ► Generally not applicable. | |-------------|-----------------------------| Part Number: Not Available Page 3 of 20 Issue Date: 07/03/2025 Version No. 2.6 Print Date: 07/03/2025 # SoftShield Hand Sanitiser | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. Generally not applicable. | |--------------|---| | Inhalation | If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. Generally not applicable. | | Ingestion | If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. Generally not applicable. | # Indication of any immediate medical attention and special treatment needed For acute or short term repeated exposures to ethanol: - Acute ingestion in non-tolerant patients usually responds to supportive care with special attention to prevention of aspiration, replacement of fluid and correction of nutritional deficiencies (magnesium, thiamine pyridoxine, Vitamins C and K). - ▶ Give 50% dextrose (50-100 ml) IV to obtunded patients following blood draw for glucose determination. - Comatose patients should be treated with initial attention to airway, breathing, circulation and drugs of immediate importance (glucose, thiamine). - Decontamination is probably unnecessary more than 1 hour after a single observed ingestion. Cathartics and charcoal may be given but are probably not effective in single ingestions. - Fructose administration is contra-indicated due to side effects. # **SECTION 5 Firefighting measures** # **Extinguishing media** - ▶ Alcohol stable foam - Dry chemical powder. - ▶ BCF (where regulations permit). - Carbon dioxide. - Water spray or fog Large fires only. # Special hazards arising from the substrate or mixture Fire Incompatibility Avoid contamination with
oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may | Advice for firefighters | | |-------------------------|--| | Fire Fighting | Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from entering drains or water course. Consider evacuation (or protect in place). Fight fire from a safe distance, with adequate cover. If safe, switch off electrical equipment until vapour fire hazard removed. Use water delivered as a fine spray to control the fire and cool adjacent area. Avoid spraying water onto liquid pools. Do not approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Slight hazard when exposed to heat, flame and oxidisers. | | Fire/Explosion Hazard | Liquid and vapour are highly flammable. Severe fire hazard when exposed to heat, flame and/or oxidisers. Vapour may travel a considerable distance to source of ignition. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include: carbon dioxide (CO2) | other pyrolysis products typical of burning organic material. Articles and manufactured articles may constitute a fire hazard where polymers form their outer layers or where combustible packaging remains in place. Certain substances, found throughout their construction, may degrade or become volatile when heated to high temperatures. This may create a secondary hazard. # SoftShield Hand Sanitiser Issue Date: 07/03/2025 Print Date: 07/03/2025 # **SECTION 6 Accidental release measures** # Personal precautions, protective equipment and emergency procedures See section 8 # **Environmental precautions** See section 12 | Minor Spills | Clean up all spills immediately. Secure load if safe to do so. Bundle/collect recoverable product. Collect remaining material in containers with covers for disposal. | |--------------|---| | Major Spills | Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. Stop leak if safe to do so. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Neutralise/decontaminate residue (see Section 13 for specific agent). Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. If contamination of drains or waterways occurs, advise emergency services. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. Consider evacuation (or protect in place). No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Water spray or fog may be used to disperse /absorb vapour. Contain spill with sand, earth or vermiculite. Use only spark-free shovels and explosion proof equipment. Collect recoverable product with sand, earth or vermiculite. Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. If contamination of drains or waterways occurs, advise emergency services. Clean up all spills immediately. Wear protective clothing, safety glasses, dust mask, gloves. Secure load if safe to do so. Bundle/collect recoverable product. Use dry clean up procedures | Personal Protective Equipment advice is contained in Section 8 of the SDS. # **SECTION 7 Handling and storage** # Precautions for safe handling # Safe handling - ▶ Containers, even those that have been emptied, may contain explosive vapours. - ▶ Do NOT cut, drill, grind, weld or perform similar operations on or near containers. - Avoid all personal contact, including inhalation. - ▶ Wear protective clothing when risk of exposure occurs. - ▶ Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - ▶ DO NOT enter confined spaces until atmosphere has been checked. - Avoid smoking, naked lights, heat or ignition sources. - ▶ When handling, **DO NOT** eat, drink or smoke. - Vapour may ignite on pumping or pouring due to static electricity. - ▶ DO NOT use plastic buckets. - ▶ Earth and secure metal containers when dispensing or pouring product. - Use spark-free tools when handling. - Avoid contact with incompatible materials. Part Number: Not Available Page 5 of 20 Issue Date: 07/03/2025 Print Date: 07/03/2025 Version No. 2.6 SoftShield Hand Sanitiser Keep containers securely sealed. Avoid physical damage to containers Always wash hands with soap and water after handling. Work clothes should be laundered separately. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. Store in original containers in approved flame-proof area. No smoking, naked lights, heat or ignition sources. ▶ DO NOT store in pits, depression, basement or areas where vapours may be trapped. Keep containers securely sealed. Store away from incompatible materials in a cool, dry well ventilated area. • Protect containers against physical damage and check regularly for leaks. ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. ▶ Tank storage: Tanks must be specifically designed for use with this product. Bulk storage tanks should be diked (bunded). Locate tanks away from heat and other sources of ignition. Cleaning, inspection and maintenance of storage tanks is a specialist operation, which requires the implementation of strict procedures and precautions. ▶ Keep in a cool place. Electrostatic charges will be generated during pumping. Electrostatic discharge may cause fire. Ensure electrical continuity by bonding and grounding (earthing) all equipment to reduce the risk. The
vapours in the head Other information space of the storage vessel may lie in the flammable/explosive range and hence may be flammable. For containers, or container linings use mild steel, stainless steel. Examples of suitable materials are; high density polyethylene (HDPE), polypropylene (PP), and Viton (FMK), which have been specifically tested for compatibility with this product. ▶ For container linings, use amine-adduct cured epoxy paint. ▶ For seals and gaskets use: graphite, PTFE, Viton A, Viton B. ▶ Unsuitable material: Some synthetic materials may be unsuitable for containers or container linings depending on the material specification and intended use. Examples of materials to avoid are: natural rubber (NR), nitrile rubber (NBR), ethylene propylene rubber (EPDM), polymethyl methacrylate (PMMA), polystyrene, polyvinyl chloride (PVC), polyisobutylene. However, some may be suitable for glove materials. ▶ Do not cut, drill, grind, weld or perform similar operations on or near containers. Containers, even those that have been emptied, can contain explosive vapours. Store away from incompatible materials. ### Conditions for safe storage, including any incompatibilities Generally packaging as originally supplied with the article or manufactured item is sufficient to protect against physical hazards. If repackaging is required ensure the article is intact and does not show signs of wear. As far as is practicably possible, reuse the original packaging or something providing a similar level of protection to both the article and the handler. - ▶ Packing as supplied by manufacturer. - Plastic containers may only be used if approved for flammable liquid. - Check that containers are clearly labelled and free from leaks. - For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure. - For materials with a viscosity of at least 2680 cSt. (23 deg. C) - ▶ For manufactured product having a viscosity of at least 250 cSt. (23 deg. C) - Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used. - ▶ Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages - In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic. # Storage incompatibility # Triethanolamine: - · is an organic base - · reacts violently with strong oxidisers, permanganates, peroxides, ammonium persulfate, bromine dioxide, sulfuric acid, nitric - · is incompatible with organic anhydrides, acrylates, alcohols, aldehydes, alkylene oxides, substituted allyls, cellulose nitrate, cresols, caprolactam solution, epichlorohydrin, ethylene dichloride, isocyanates, ketones, glycols, mercury, nitrates, phenols, - · decomposes exothermically with maleic anhydride - · increase the explosive sensitivity of nitromethane - · corrodes, aluminium, copper, its alloys, tin, zinc - Avoid oxidising agents, acids, acid chlorides, acid anhydrides, chloroformates. # Diethanolamine: - reacts vigorously with strong oxidisers - reacts with aldehydes, ketones, acrylates, formates, oxalates, nitrites, non-oxidising mineral acids, strong acids, organic acids, organic anhydrides, isocyanates, vinyl acetate, acrylates, substituted allyls, alkylene oxides, epichlorohydrin, - ▶ may undergo self-sustaining thermal decomposition at temperatures above 250 C - attacks aluminium, copper, zinc and their alloys, and galvanised iron # Monoethanolamine - is a strong organic base - reacts violently with strong oxidisers, strong acids (with spattering) - is incompatible with acetic acid, acetic anhydride, acrolein, acrylates, acrylic acid, acrylonitrile, alcohols, aldehydes, alkali metals, alkylene oxides, substituted allyls, caprolactam solution, cellulose nitrate, chlorosulfonic acid, cresols, epichlorohydrin, glycols, halogenated hydrocarbons, isocyanates, ketones, mesityl oxide, oleum, organic anhydrides, phenols, beta-propiolactone, vinyl acetate # Suitable container # SoftShield Hand Sanitiser Issue Date: 07/03/2025 Print Date: 07/03/2025 - forms explosive mixture with sodium perchlorate - reacts with iron forming tris-ethanolamineiron - ▶ may undergo a self-sustaining thermal decomposition when heated in excess of 250 degrees C - attacks aluminium, copper, lead, tin, zinc, and their alloys - ▶ attacks plastics, coatings an rubber - Avoid strong bases. - Must not be stored together - May be stored together with specific preventions - May be stored together Note: Depending on other risk factors, compatibility assessment based on the table above may not be relevant to storage situations, particularly where large volumes of dangerous goods are stored and handled. Reference should be made to the Safety Data Sheets for each substance or article and risks assessed accordingly. # **SECTION 8 Exposure controls / personal protection** # **Control parameters** # Occupational Exposure Limits (OEL) # INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |---|-----------------------|-------------------------|------------------------|-------------------------|------------------|-------------------| | New Zealand Workplace
Exposure Standards (WES) | ethanol,
denatured | Ethanol (Ethyl alcohol) | 200 ppm / 280
mg/m3 | 1520 mg/m3 / 800
ppm | Not
Available | oto -
Ototoxin | | New Zealand Workplace
Exposure Standards (WES) | triethanolamine | Triethanolamine | 1 mg/m3 | Not Available | Not
Available | Not Available | | Ingredient | Original IDLH | Revised IDLH | |---|---------------|---------------| | ethanol, denatured | Not Available | Not Available | | acrylates/ C10-30-alkyl acrylate crosspolymer | Not Available | Not Available | | triethanolamine | Not Available | Not Available | # MATERIAL DATA Odour Threshold Value: 49-716 ppm (detection), 101 ppm (recognition) Eye and respiratory tract irritation do not appear to occur at exposure levels of less than 5000 ppm and the TLV-TWA is thought to provide an adequate margin of safety against such effects. Experiments in man show that inhalation of 1000 ppm caused slight symptoms of poisoning and 5000 ppm caused strong stupor and morbid sleepiness. Subjects exposed to 5000 ppm to 10000 ppm experienced smarting of the eyes and nose and coughing. Symptoms disappeared within minutes. Inhalation also causes local irritating effects to the eyes and upper respiratory tract, headaches, sensation of heat intraocular tension, stupor, fatigue and a need to sleep. At 15000 ppm there was continuous lachrymation and coughing. Exposed individuals are NOT reasonably expected to be warned, by smell, that the Exposure Standard is being exceeded. Odour Safety Factor (OSF) is determined to fall into either Class C, D or E. The Odour Safety Factor (OSF) is defined as: OSF= Exposure Standard (TWA) ppm/ Odour Threshold Value (OTV) ppm Classification into classes follows: ClassOSF Description Over 90% of exposed individuals are aware by smell that the Exposure Standard (TLV-TWA for example) is being reached, even when distracted by 550 Α working activities 26-В As "A" for 50-90% of persons being distracted 550 C 1-26 As "A" for less than 50% of persons being distracted 0.18-1 10-50% of persons aware of being tested perceive by smell that the Exposure Standard is being reached D <0.18 As "D" for less than 10% of persons aware of being tested # for triethanolamine: Exposure at or below the TLV-TWA is thought to minimise the potential for skin and eye irritation, and acute effects (including liver, kidney and nerve damage) and chronic effects (including cancer and allergic contact dermatitis). Odour Safety Factor (OSF) OSF=0.77 (triethanolamine) #### SoftShield Hand Sanitiser Issue Date: 07/03/2025 Print Date: 07/03/2025 ### **Exposure controls** Articles or manufactured items, in their original condition, generally don't require engineering controls during handling or in Exceptions may arise following extensive use and subsequent wear, during recycling or disposal operations where substances, found in the article, may be released to the environment. Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. | Type of Contaminant: | Air Speed: |
---|---------------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5
m/s
(50-100
f/min.) | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s
(100-200
f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s
(200-500
f/min.) | # Appropriate engineering controls Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | | |--|----------------------------------|--| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | | 3: Intermittent, low production. | 3: High production, heavy use | | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. - · Adequate ventilation is typically taken to be that which limits the average concentration to no more than 25% of the LEL within the building, room or enclosure containing the dangerous substance. - · Ventilation for plant and machinery is normally considered adequate if it limits the average concentration of any dangerous substance that might potentially be present to no more than 25% of the LEL. However, an increase up to a maximum 50% LEL can be acceptable where additional safeguards are provided to prevent the formation of a hazardous explosive atmosphere. For example, gas detectors linked to emergency shutdown of the process might be used together with maintaining or increasing the exhaust ventilation on solvent evaporating ovens and gas turbine enclosures. - · Temporary exhaust ventilation systems may be provided for non-routine higher-risk activities, such as cleaning, repair or maintenance in tanks or other confined spaces or in an emergency after a release. The work procedures for such activities should be carefully considered.. The atmosphere should be continuously monitored to ensure that ventilation is adequate and the area remains safe. Where workers will enter the space, the ventilation should ensure that the concentration of the dangerous substance does not exceed 10% of the LEL (irrespective of the provision of suitable breathing apparatus) Individual protection measures, such as personal protective equipment # Eye and face protection No special equipment required due to the physical form of the product. - Safety glasses with side shields. - ► Chemical goggles. [AS/NZS 1337.1, EN166 or national equivalent] - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should Issue Date: 07/03/2025 Part Number: Not Available Page 8 of 20 Print Date: 07/03/2025 Version No: 2.6 SoftShield Hand Sanitiser | | be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]. | |-----------------------|---| | Skin protection | See Hand protection below | | Hands/feet protection | Wear general protective gloves, eg. light weight rubber gloves. NOTE: The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. | | Body protection | See Other protection below | | Other protection | Overalls. PVC Apron. PVC protective suit may be required if exposure severe. Eyewash unit. Ensure there is ready access to a safety shower. Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity. For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets). Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return. No special equipment required due to the physical form of the product. | # Respiratory protection Type AK-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. | Required Minimum
Protection Factor | Half-Face
Respirator | Full-Face
Respirator | Powered Air
Respirator | |---------------------------------------|-------------------------|-------------------------|-----------------------------| | up to 10 x ES | AK-AUS P2 | - | AK-PAPR-AUS /
Class 1 P2 | | up to 50 x ES | - | AK-AUS /
Class 1 P2 | - | | up to 100 x ES | - | AK-2 P2 | AK-PAPR-2 P2 ^ | $A(AII\ classes) = Organic\ vapours,\ B\ AUS\ or\ B1 = Acid\ gasses,\ B2 = Acid\ gas\ or$ hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur $\label{eq:GO2} \mbox{dioxide}(SO2), \mbox{ } \mbox{G} = \mbox{Agricultural chemicals}, \mbox{ } \mbox{K} = \mbox{Ammonia}(\mbox{NH3}), \mbox{ } \mbox{Hg} = \mbox{Mercury},$ NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) Respiratory protection not normally required due to the physical form of the product. # **SECTION 9 Physical and chemical properties** # Information on basic physical and chemical properties | Appearance | Colourless | | | |--|---------------|---|---------------| | | | Relative density (Water = | | | Physical state | Article | 1) | .90 | | Odour | Not Available | Partition coefficient n-
octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | 6.5-7.0 | Decomposition temperature (°C) | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Available | # SoftShield Hand Sanitiser Issue Date: 07/03/2025 Print Date: 07/03/2025 | Flash point
(°C) | 25 | Taste | Not Available | |---|-------------------|---|---------------| | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | HIGHLY FLAMMABLE. | Oxidising properties | Not Available | | Upper Explosive Limit (%) | 19 | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | 3.5 | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water | Miscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | | Heat of Combustion (kJ/g) | Not Available | Ignition Distance (cm) | Not Available | | Flame Height (cm) | Not Available | Flame Duration (s) | Not Available | | Enclosed Space Ignition
Time Equivalent (s/m3) | Not Available | Enclosed Space Ignition
Deflagration Density
(g/m3) | Not Available | # **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | # **SECTION 11 Toxicological information** # Information on toxicological effects | a) Acute Toxicity | Based on available data, the classification criteria are not met. | | | |---|---|--|--| | b) Skin Irritation/Corrosion | There is sufficient evidence to classify this material as skin corrosive or irritating. | | | | c) Serious Eye
Damage/Irritation | There is sufficient evidence to classify this material as eye damaging or irritating | | | | d) Respiratory or Skin
sensitisation | ased on available data, the classification criteria are not met. | | | | e) Mutagenicity | Based on available data, the classification criteria are not met. | | | | f) Carcinogenicity | Based on available data, the classification criteria are not met. | | | | g) Reproductivity | Based on available data, the classification criteria are not met. | | | | h) STOT - Single Exposure | There is sufficient evidence to classify this material as toxic to specific organs through single exposure | | | | i) STOT - Repeated
Exposure | Based on available data, the classification criteria are not met. | | | | j) Aspiration Hazard | Based on available data, the classification criteria are not met. | | | | | | | | | | Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial | | | number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo. Inhaled The most common signs of inhalation overexposure to ethanol, in animals, include ataxia, incoordination and drowsiness for those surviving narcosis. The narcotic dose for rats, after 2 hours of exposure, is 19260 ppm. Inhalation hazard is increased at higher temperatures. Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system depression - characterised by headache and dizziness, increased reaction time, fatigue and loss of co-ordination When rats (both sexes) were exposed to statically generated triethanolamine (25 deg. C) for six hours, there were no major signs nor was there any gross pathology (kill rate 0/6). The odour of isopropanol may give some warning of exposure, but odour fatigue may occur. Inhalation of isopropanol may produce irritation of the nose and throat with sneezing, sore throat and runny nose. The effects in animals subject to a single exposure, by inhalation, included inactivity or anaesthesia and histopathological changes in the nasal canal and auditory canal. Ingestion Accidental ingestion of the material may be damaging to the health of the individual. Part Number: Not Available Page 10 of 20 Issue Date: 07/03/2025 Version No: 2.6 Print Date: 07/03/2025 # SoftShield Hand Sanitiser Ingestion of ethanol (ethyl alcohol, "alcohol") may produce nausea, vomiting, bleeding from the digestive tract, abdominal pain, and diarrhoea. Effects on the body: | Blood concentration | Effects | |---------------------|--| | <1.5 g/L | Mild: impaired vision, co-ordination and reaction time; emotional instability | | 1.5-3.0 g/L | Moderate: Slurred speech, confusion, inco-ordination, emotional instability, disturbances in perception and senses, possible blackouts, and impaired objective performance in standardized tests. Possible double vision, flushing, fast heart rate, sweating and incontinence. Slow breathing may occur rarely and fast breathing may develop in cases of metabolic acidosis, low blood sugar and low blood potassium. Central nervous system depression may progress to coma. | | 3-5 g/L | Severe: cold clammy skin, low body temperature and low blood pressure. Atrial fibrillation and heart block have been reported. Depression of breathing may occur, respiratory failure may follow serious poisoning, choking on vomit may result in lung inflammation and swelling. Convulsions due to severe low blood sugar may also occur. Acute liver inflammation may develop. | Ingestion of triethanolamine may cause gastro-intestinal irritation with haemorrhage and congestion of intestines. May be fatal if swallowed. Calculated median lethal dose in 70 kg man is 560 gms. [ICI] Triethanolamine may cause burning or painful sensations in the mouth, throat, chest and abdomen, vomiting and diarrhoea. In rats where triethanolamine was administered orally, major toxic signs included sluggishness, lachrymation, piloerection, unsteady gait, diarrhoea and red or brown discharge on perinasal and perigenital hair. Gross pathological investigations revealed discoloured lungs, stomach, intestines and a dark red liquid in the stomach and intestine Swallowing 10 millilitres of isopropanol may cause serious injury; 100 millilitres may be fatal if not properly treated. The adult single lethal dose is approximately 250 millilitres. Isopropanol is twice as poisonous as ethanol, and the effects caused are similar, except that isopropanol does not cause an initial feeling of well-being. Swallowing may cause nausea, vomiting and diarrhea; vomiting and stomach inflammation is more prominent with isopropanol than with ethanol. Animals given near-lethal doses also showed inco-ordination, lethargy, inactivity and loss of consciousness. There is evidence that a slight tolerance to isopropanol may be acquired. Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. # Skin Contact The material may accentuate any pre-existing dermatitis condition Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. Brief contact with triethanolamine may cause slight irritation with itching and local redness. Prolonged contact may produce more severe irritation with discomfort, or pain, localised redness and swelling (oedema) and possible tissue destruction. Skin contact may produce sensitisation in a small proportion of individuals. Covered patch testing resulted in a small percentage of subjects who displayed signs of allergic contact dermatitis (BIBRA Toxicology Profile, 1990). Triethanolamine has also been identified as the cause of erythematous vesicular lesions, eczema, non-allergic contact dermatitis and irritation amongst workers. Rabbits exposed percutaneously to toxic levels of triethanolamine showed sluggishness, unsteady gait and emaciation. Gross pathology consisted of discoloured lungs, thymus, spleen, kidneys, stomach
and, gas and/ or liquid-filled intestines. Guinea pigs exposed dermally to triethanolamine (8 g/kg/day, 5 days/week applied to shaved and subsequently bandaged skin), died between the second and seventeenth application. Necrosis of the epithelium was observed. Kidneys and liver showed cloudy swelling and congestion; fatty changes were seen in the central ascini of the liver, and lung and adrenal congestion were observed. The material may produce moderate skin irritation; limited evidence or practical experience suggests, that the material either: - ▶ produces moderate inflammation of the skin in a substantial number of individuals following direct contact and/or - produces significant, but moderate, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. For isopropanol (IPA): Acute toxicity: Isopropanol has a low order of acute toxicity. It is irritating to the eyes, but not to the skin. Very high vapor concentrations are irritating to the eyes, nose, and throat, and prolonged exposure may produce central nervous system depression and narcosis. Human volunteers reported that exposure to 400 ppm isopropanol vapors for 3 to 5 min. caused mild irritation of the eyes, nose and throat. Although isopropanol produced little irritation when tested on the skin of human volunteers, there have been reports of isolated Part Number: Not Available Page 11 of 20 Issue Date: 07/03/2025 Print Date: 07/03/2025 Version No. 2.6 #### SoftShield Hand Sanitiser cases of dermal irritation and/or sensitization. The use of isopropanol as a sponge treatment for the control of fever has resulted in cases of intoxication, probably the result of both dermal absorption and inhalation. There have been a number of cases of poisoning reported due to the intentional ingestion of isopropanol, particularly among alcoholics or suicide victims. These ingestions typically result in a comatose condition. Pulmonary difficulty, nausea, vomiting, and headache accompanied by various degrees of central nervous system depression are typical. In the absence of shock, recovery usually occurred. Repeat dose studies: The systemic (non-cancer) toxicity of repeated exposure to isopropanol has been evaluated in rats and mice by the inhalation and oral routes. The only adverse effects-in addition to clinical signs identified from these studies were to the kidney. Reproductive toxicity: A recent two-generation reproductive study characterised the reproductive hazard for isopropanol associated with oral gayage exposure. This study found that the only reproductive parameter apparently affected by isopropanol exposure was a statistically significant decrease in male mating index of the F1 males. It is possible that the change in this reproductive parameter was treatment related and significant, although the mechanism of this effect could not be discerned from the results of the study. However, the lack of a significant effect of the female mating index in either generation, the absence of any adverse effect on litter size, and the lack of histopathological findings of the testes of the high-dose males suggest that the observed reduction in male mating index may not be biologically meaningful. Developmental toxicity: The developmental toxicity of isopropanol has been characterized in rat and rabbit developmental toxicity studies. These studies indicate that isopropanol is not a selective developmental hazard. Isopropanol produced developmental toxicity in rats, but not in rabbits. In the rat, the developmental toxicity occurred only at maternally toxic doses and consisted of decreased foetal body weights, but no teratogenicity Genotoxicity: All genotoxicity assays reported for isopropanol have been negative Carcinogenicity: rodent inhalation studies were conduct to evaluate isopropanol for cancer potential. The only tumor rate increase seen was for interstitial (Leydig) cell tumors in the male rats. Interstitial cell tumors of the testis is typically the most frequently observed spontaneous tumor in aged male Fischer 344 rats. These studies demonstrate that isopropanol does not exhibit carcinogenic potential relevant to humans. Furthermore, there was no evidence from this study to indicate the development of carcinomas of the testes in the male rat, nor has isopropanol been found to be genotoxic. Thus, the testicular tumors seen in the isopropanol exposed male rats are considered of no significance in terms of human cancer risk assessment When applied to the eye(s) of animals, the material produces severe ocular lesions which are present twenty-four hours or more after instillation Direct contact of the eye with ethanol may cause immediate stinging and burning with reflex closure of the lid and tearing, transient injury of the corneal epithelium and hyperaemia of the conjunctiva. Foreign-body type discomfort may persist for up to 2 days but healing is usually spontaneous and complete. Isopropanol vapour may cause mild eye irritation at 400 ppm. Splashes may cause severe eye irritation, possible corneal burns and eye damage. Eye contact may cause tearing or blurring of vision. Chronic On the basis, primarily, of animal experiments, concern has been expressed that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment. Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals. Substances that can cause occupational asthma (also known as asthmagens and respiratory sensitisers) can induce a state of specific airway hyper-responsiveness via an immunological, irritant or other mechanism. Once the airways have become hyperresponsive, further exposure to the substance, sometimes even to tiny quantities, may cause respiratory symptoms. These symptoms can range in severity from a runny nose to asthma. Not all workers who are exposed to a sensitiser will become hyper-responsive and it is impossible to identify in advance who are likely to become hyper-responsive. Substances than can cuase occupational asthma should be distinguished from substances which may trigger the symptoms of asthma in people with pre-existing air-way hyper-responsiveness. The latter substances are not classified as asthmagens or respiratory sensitisers Wherever it is reasonably practicable, exposure to substances that can cuase occupational asthma should be prevented. Where this is not possible the primary aim is to apply adequate standards of control to prevent workers from becoming hyperresponsive. Activities giving rise to short-term peak concentrations should receive particular attention when risk management is being considered. Health surveillance is appropriate for all employees exposed or liable to be exposed to a substance which may cause occupational asthma and there should be appropriate consultation with an occupational health professional over the degree of risk and level of surveillance. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. Long-term exposure to ethanol may result in progressive liver damage with fibrosis or may exacerbate liver injury caused by other agents. Repeated ingestion of ethanol by pregnant women may adversely affect the central nervous system of the developing foetus, producing effects collectively described as foetal alcohol syndrome. These include mental and physical retardation, learning disturbances, motor and language deficiency, behavioural disorders and reduced head size. Consumption of ethanol (in alcoholic beverages) may be linked to the development of Type I hypersensitivities in a small number of individuals. Symptoms, which may appear immediately after consumption, include conjunctivitis, angioedema, dyspnoea, and urticarial rashes. The causative agent may be acetic acid, a metabolite (1). (1) Boehncke W.H., & H.Gall, Clinical & Experimental Allergy, 26, 1089-1091, 1996 Reversible liver and kidney damage has been demonstrated in animals from chronic exposure to triethanolamine. Although the product is not, in itself, carcinogenic, reaction under strong acid conditions, with nitrites and nitrous acids results in the formation of a potent carcinogen. N-nitrosodiethanolamine. This situation might be encountered in certain metal-treatment operations, for example. A cohort study, in which cancer morbidity and mortality were investigated in workers exposed to cutting fluids with nitrates and amines (amongst them triethanolamine), had negative results. The effects on workers industrially exposed to metal-working coolants containing sodium nitrite and triethanolamine solutions were investigated in a Russian study. Observed vascular effecs were attributed to sodium nitrite: no effects were attributed to triethanolamine. Screening studies in mice suggest that the material does not effect foetal development. Eye Part Number: Not Available Page 12 of 20 Version No: 2.6 # SoftShield Hand Sanitiser In the European Union, trialkylamines, trialkanolamines, and
their salts (ingredients containing TEA) may only be used up to 2.5%, must be at least 99% pure, are not to be used with nitrosating systems, must have a maximum secondary amine content Issue Date: 07/03/2025 Print Date: 07/03/2025 of 0.5%, must have a maximum nitrosamine content of 50 ug/kg, and must be kept in nitrite-free containers Ingestion may result in intoxication, drunkenness. In chronic form this may result in alcoholism, liver damage. Long term, or repeated exposure of isopropanol may cause inco-ordination and tiredness. Repeated inhalation exposure to isopropanol may produce sleepiness, inco-ordination and liver degeneration. Animal data show developmental effects only at exposure levels that produce toxic effects in adult animals. Isopropanol does not cause genetic damage. There are inconclusive reports of human sensitisation from skin contacts with isopropanol. Chronic alcoholics are more tolerant of the whole-body effects of isopropanol. Animal testing showed the chronic exposure did not produce reproductive effects. NOTE: Commercial isopropanol does not contain "isopropyl oil", which caused an excess incidence of sinus and throat cancers in isoproanol production workers in the past. "Isopropyl oil" is no longer formed during production of isopropanol. | oftShield Hand Sanitiser | TOXICITY | IRRITATION | |--------------------------|---|--| | tSnieid Hand Sanitiser | Not Available | Not Available | | | TOXICITY | IRRITATION | | | Dermal (rabbit) LD50: 17100 mg/kg ^[1] | Eye (Rodent - rabbit): 0.1mL | | | Inhalation (Rat) LC50: 64000 ppm4h ^[2] | Eye (Rodent - rabbit): 100mg/4S - Moderate | | | Oral (Rat) LD50: 7060 mg/kg ^[2] | Eye (Rodent - rabbit): 100uL - Moderate | | | | Eye (Rodent - rabbit): 500mg - Severe | | ethanol, denatured | | Eye (Rodent - rabbit): 500mg/24H - Mild | | ethanoi, denatured | | Eye: adverse effect observed (irritating) ^[1] | | | | Eye: no adverse effect observed (not irritating) ^[1] | | | | Skin (Human): 70%/2D | | | | Skin (Rodent - rabbit): 20mg/24H - Moderate | | | | Skin (Rodent - rabbit): 400mg - Mild | | | | Skin: no adverse effect observed (not irritating) ^[1] | | acrylates/ C10-30-alkyl | TOXICITY | IRRITATION | | acrylate crosspolymer | Not Available | Not Available | | | TOXICITY | IRRITATION | | | dermal (rat) LD50: >16000 mg/kg ^[2] | Eye (Rodent - rabbit): 10mg - Mild | | | Oral (Rabbit) LD50; 2200 mg/kg ^[2] | Eye (Rodent - rabbit): 20mg - Severe | | triethanolamine | | Eye: no adverse effect observed (not irritating) ^[1] | | | | Skin (Human): 15mg/3D (intermittent) - Mild | | | | Skin (Rodent - mouse): 50% - Severe | | | | Skin (Rodent - rabbit): 560mg/24H - Mild | | | | Skin: no adverse effect observed (not irritating) ^[1] | Legend 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances # ETHANOL, DENATURED The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. ### ACRYLATES/ C10-30-ALKYL ACRYLATE CROSSPOLYMER The Cosmetic Ingredient Review (CIR) Expert Panel noted that these crosslinked alkyl acrylates are macromolecules that are not expected to pass through the stratum corneum of the skin, so significant dermal absorption is not expected. Therefore, topically applied cosmetics are not expected to result in systemic or reproductive and developmental toxicity or to have genotoxic or carcinogenic effects upon use. The Panel noted that cosmetic products containing these ingredients are reportedly used around the eyes, on the lips, and on other mucous membranes. Thus, crosslinked alkyl acrylates could be absorbed systemically through the relatively moist,n stratum cornea of the conjunctiva, lips,and other mucous membranes, and through ingestion when applied to the lips. However, the Panel noted that any absorption through healthy intact mucous membranes is likely to be not significant,primarily because of the relatively large molecular sizes. Furthermore, the chemically inert nature of the polymers precludes degradation to smaller absorbable species. Absorption of the polymers and their residual monomers in cosmetic products also would be limited after application to the lips or eye area based on the relatively small fractions of the applied products that might be inadvertently ingested or make direct contact with the conjunctiva. Part Number: Not Available Page 13 of 20 Issue Date: 07/03/2025 Version No: 2.6 #### SoftShield Hand Sanitiser The Carbomers (Carbopols) are synthetic, high molecular weight, nonlinear polymers of acrylic acid, cross-linked with a polyalkenyl polyether. The Carbomer polymers are used in cosmetics and emulsifying agents at concentrations up to 50%. Acute oral animal studies showed that Carbomers-910, -934, -934P, -940, and -941 have low toxicities when ingested. Rabbits showed minimal skin irritation and zero to moderate eye irritation when tested with Carbomers-910 and -934. Subchronic feeding of rats and dogs with Carbomer-934 in the diet resulted in lower than normal body weights, but no pathological changes were observed. Dogs chronically fed Carbomer-934P manifested gastrointestinal irritation and marked pigment deposition within Kupffer cells of the liver. Clinical studies with Carbomers showed that these polymers have low potential for skin irritation and sensitization at concentrations up to 100%. Carbomer-934 demonstrated low potential for phototoxicity and photo-contact allergenicity. On the basis of the available information presented and as qualified in the report, it is concluded that the Carbomers are safe as cosmetic ingredients. Little toxicity data is available for acrylic crosspolymers; the acute dermal and oral toxicity data that were found indicated that these ingredients are not very toxic. The little genotoxicity data that were available reported negative results in Ames tests. Carcinogenicity data were not found in the published literature for the polymers, but data were available for the monomers. In an alternative method study, acrylates/vinyl neodecanoate crosspolymer was predicted to be a non-irritant. The non-human studies reported no to slight irritation with undiluted and weak sensitization with 2% aq., acrylates/C10-30 alkyl acrylate crosspolymer, no irritation with acrylates crosspolymer at 30% in olive oil, and no irritation or sensitization with sodium acrylates crosspolymer-2 (concentration not specified). Mostly, human testing with undiluted acrylates/C10-30 alkyl acrylate crosspolymer, acrylates crosspolymer, and acrylates/ethylhexyl acrylate crosspolymer, up to 2.5% aq. acrylates/vinyl isodecanoate crosspolymer, and acrylates/ethylhexyl acrylate crosspolymer, up to 2.5% aq. acrylates/vinyl isodecanoate crosspolymer, and formulations containing up to 2.6% lauryl methacrylate/glycol dimethacrylate crosspolymers do not indicate any dermal irritation or sensitization. The only exception was a weak irritant response noted during an intensified Shelanski human repeated insult patch test (HRIPT) with undiluted acrylates/C10-30 alkyl acrylate crosspolymer. Alternative test methods for ocular irritation indicated that acrylates/vinyl isodecanoate crosspolymer and a formulation containing 1% lauryl methacrylate/glycol dimethacrylate crosspolymer are not likely ocular irritants. In studies using rabbits, undiluted acrylates/C10-30 alkyl acrylate crosspolymer produced minimal to moderate irritation, and it was considered a borderline irritant in unrinsed rabbit eyes. Acrylates crosspolymer, at 50% in olive oil, and sodium acrylates crosspolymer-2 did not appear to be ocular irritants in rabbit eyes. Two different risk assessments evaluating the carcinogenic endpoint for benzene that may be present in acrylates/ C10-30 alkyl acrylates crosspolymer resulted in different lifetime risk. One found that the risk was within the range associated with a 10exp 6 cancer risk, while the other reported a 20-fold greater risk. Final Safety Assessment: Crosslinked Alkyl Acrylates as Used in Cosmetics. Nov 2011 Cosmetic Ingredient Review (CIR) Expert Panel $https://ntp.niehs.nih.gov/ntp/roc/nominations/2013/publiccomm/attachmentcir_508.pdf$ No significant acute toxicological data identified in literature search. ### TRIETHANOLAMINE Lachrymation, diarrhoea, convulsions, urinary tract changes, changes in bladder weight, changes in testicular weight, changes in thymus weight, changes in liver weight, dermatitis after systemic exposure, kidney, ureter, bladder tumours recorded. Equivocal tumourigen by RTECS criteria. Dermal rabbit value quoted above is for occluded patch in male or female animals * Union Carbide While it is difficult to generalise about the full range of potential health effects posed by exposure to the many different amine compounds, characterised by those used in the manufacture of polyurethane and polyisocyanurate foams, it is agreed that overexposure to the majority of these materials may cause adverse health effects. - Many amine-based compounds can induce histamine liberation, which, in turn, can trigger allergic and other physiological effects, including bronchoconstriction or bronchial asthma and rhinitis. - Systemic symptoms include headache, nausea, faintness, anxiety, a decrease in blood pressure, tachycardia (rapid heartbeat), itching, erythema (reddening of the skin), urticaria (hives), and facial edema (swelling). Systemic effects (those affecting the body) that are related to the pharmacological action of amines are
usually transient. Typically, there are four routes of possible or potential exposure: inhalation, skin contact, eye contact, and ingestion. # Inhalation: Inhalation of vapors may, depending upon the physical and chemical properties of the specific product and the degree and length of exposure, result in moderate to severe irritation of the tissues of the nose and throat and can irritate the lungs. Products with higher vapour pressures have a greater potential for higher airborne concentrations. This increases the probability of worker exposure. Higher concentrations of certain amines can produce severe respiratory irritation, characterised by nasal discharge, coughing, difficulty in breathing, and chest pains. Chronic exposure via inhalation may cause headache, nausea, vomiting, drowsiness, sore throat, bronchopneumonia, and possible lung damage. Also, repeated and/or prolonged exposure to some amines may result in liver disorders, jaundice, and liver enlargement. Some amines have been shown to cause kidney, blood, and central nervous system disorders in laboratory animal studies. While most polyurethane amine catalysts are not sensitisers, some certain individuals may also become sensitized to amines and may experience respiratory distress, including asthma-like attacks, whenever they are subsequently exposed to even very small amounts of vapor. Once sensitised, these individuals must avoid any further exposure to amines. Although chronic or repeated inhalation of vapor concentrations below hazardous or recommended exposure limits should not ordinarily affect healthy individuals, chronic overexposure may lead to permanent pulmonary injury, including a reduction in lung function, breathlessness, chronic bronchitis, and immunologic lung disease. Inhalation hazards are increased when exposure to amine catalysts occurs in situations that produce aerosols, mists, or heated vapors. Such situations include leaks in fitting or transfer lines. Medical conditions generally aggravated by inhalation exposure include asthma, bronchitis, and emphysema. # Skin Contact: Skin contact with amine catalysts poses a number of concerns. Direct skin contact can cause moderate to severe irritation and injury-i.e., from simple redness and swelling to painful blistering, ulceration, and chemical burns. Repeated or prolonged exposure may also result in severe cumulative dermatitis. Skin contact with some amines may result in allergic sensitisation. Sensitised persons should avoid all contact with amine catalysts. Systemic effects resulting from the absorption of the amines through skin exposure may include headaches, nausea, faintness, anxiety, decrease in blood pressure, reddening of the skin, hives, and facial swelling. These symptoms may be related to the pharmacological action of the amines, and they are usually transient. # Eye Contact: Amine catalysts are alkaline in nature and their vapours are irritating to the eyes, even at low concentrations. Part Number: Not Available Page 14 of 20 Issue Date: 07/03/2025 Version No: 2.6 Print Date: 07/03/2025 #### SoftShield Hand Sanitiser Direct contact with the liquid amine may cause severe irritation and tissue injury, and the "burning" may lead to blindness. (Contact with solid products may result in mechanical irritation, pain, and corneal injury.) Exposed persons may experience excessive tearing, burning, conjunctivitis, and corneal swelling. The corneal swelling may manifest itself in visual disturbances such as blurred or "foggy" vision with a blue tint ("blue haze") and sometimes a halo phenomenon around lights. These symptoms are transient and usually disappear when exposure ceases. Some individuals may experience this effect even when exposed to concentrations below doses that ordinarily cause respiratory irritation. #### Ingestion: The oral toxicity of amine catalysts varies from moderately to very toxic. Some amines can cause severe irritation, ulceration, or burns of the mouth, throat, esophagus, and gastrointestinal tract. Material aspirated (due to vomiting) can damage the bronchial tubes and the lungs. Affected persons also may experience pain in the chest or abdomen, nausea, bleeding of the throat and the gastrointestinal tract, diarrhea, dizziness, drowsiness, thirst, circulatory collapse, coma, and even death. # Polyurethane Amine Catalysts: Guidelines for Safe Handling and Disposal; Technical Bulletin June 2000 Alliance for Polyurethanes Industry The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. For triethanolamine (and its salts): **Acute toxicity:** Triethanolamine is of low toxicity by the oral, dermal and inhalation routes of exposure. Oral LD50 values have been shown to range from approximately 5-10 g/kg. The dermal LD50 is greater than 2 g/kg. The inhalation LC50 is greater than a saturated atmosphere Repeat Dose Toxicity: The studies to determine toxicity of triethanolamine from repeated exposure were conducted for a duration of 91 days or 2 years. In both studies the NOAEL was at least 1000 mg/kg. There was no evidence of gross or histopathological change that could be attributed to treatment. Also, triethanolamine was shown to be non-carcinogenic. **Genetic Toxicity:** Mutation (bacterial); This endpoint has been satisfied by two studies using 4 strains (TA 98, TA 100, TA 1535 and TA 1537) of *Salmonella typhimurium*. Triethanolamine was not mutagenic in any of the tester strains. Chromosomal aberration (mammalian, *in vitro*) – This endpoint was satisfied by a cytogenetic assay using Chinese hamster lung cells. Triethanolamine did not induce chromosome aberrations in this test system. Reproductive Toxicity: No studies have been conducted to specifically evaluate the effect of triethanolamine on reproductive performance. However, based on consideration of the repeat dose toxicity studies of at least 90 days duration, there were no abnormalities noted in the histopathological examination of reproductive organs. This fact, and the lack of effects on foetal development, allow the conclusion that triethanolamine would not be expected to produce adverse effects to reproductive performance and fertility. **Developmental Toxicity:** This endpoint was satisfied using a developmental toxicity screening study according to the Chernoff-Kaylock method. Based on the results from this test, triethanolamine does not impair development of the fetus. A Cosmetic Ingredient Review (CIR) expert panel conducted a review of triethanolamine-containing personal care products. The panel was concerned with the levels of free diethanolamine that could be present as an impurity in TEA or TEA-containing ingredients. The panel stated that the amount of free diethanolamine available must be limited to the present practices of use and concentration of diethanolamine. The Panel concluded that TEA and 31 related TEA-containing ingredients, are safe when formulated to be nonirritating and when the levels of free diethanolamine do not exceed the prescribed levels. These ingredients should not be used in cosmetic products in which N-nitroso compounds can be formed. Dermal carcinogenicity studies performed by the NTP on TEA reported equivocal evidence of carcinogenic activity in male mice based on the occurrence of liver hemangiosarcoma, some evidence of carcinogenic activity in female mice based on increased incidences of hepatocellular adenoma, and equivocal evidence of carcinogenic activity in male rats based on a marginal increase in the incidence of renal tubule cell adenoma. It has been hypothesized that TEA may cause liver tumours in mice via a choline-depletion mode of action. Humans are much less sensitive to this deficiency, and these hepatic findings are considered to have little relevance to humans regarding the safety of the use of TEA in personal care products. The panel was concerned that the potential exists for dermal irritation with the use of products formulated using TEA or TEA-related ingredients. The panel specified that products containing these ingredients must be formulated to be nonirritating. Tertiary alkyl amines such as TEA do not react with N-nitrosating agents to directly form nitrosamines. However, tertiary amines can act as precursors in nitrosamine formation by undergoing nitrosative cleavage.he resultant secondary amine (ie, diethanolamine) can then be N-nitrosated to products that may be carcinogenic. Because of the potential for this process to occur, TEA and TEA-containing ingredients should not be used in cosmetic products in which N-nitroso compounds can be Safety Assessment of Triethanolamine and Triethanolamine-Containing Ingredients as Used in Cosmetics: International Journal of Toxicology (supplement 1) 59S-83S. 2013 https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.901.4174&rep=rep1&type=pdf The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing. **NOTE:** Substance has been shown to be mutagenic in at least one assay, or belongs to a family of chemicals producing damage or change to cellular DNA. SoftShield Hand Sanitiser & ACRYLATES/ C10-30-ALKYL ACRYLATE CROSSPOLYMER & TRIETHANOLAMINE Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes
to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production. SoftShield Hand Sanitiser & TRIETHANOLAMINE The following information refers to contact allergens as a group and may not be specific to this product. # SoftShield Hand Sanitiser Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. **ETHANOL, DENATURED &** The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to TRIETHANOLAMINE irritants may produce conjunctivitis. | Acute Toxicity | × | Carcinogenicity | × | |-----------------------------------|----------|--------------------------|----------| | Skin Irritation/Corrosion | ~ | Reproductivity | × | | Serious Eye
Damage/Irritation | ✓ | STOT - Single Exposure | ~ | | Respiratory or Skin sensitisation | × | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | × | Legend: 🗶 – Data either not available or does not fill the criteria for classification Data available to make classification # **SECTION 12 Ecological information** # **Toxicity** | SoftShield Hand Sanitiser | Endpoint | Test Duration (hr) | Species | Value | Source | |--|------------------|----------------------|-------------------------------|-------------------------------|------------------| | | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | EC50 | 96h | Algae or other aquatic plants | <0.001mg/L | 4 | | | EC50 | 72h | Algae or other aquatic plants | 275mg/l | 2 | | ethanol, denatured | EC50(ECx) | 96h | Algae or other aquatic plants | <0.001mg/L | 4 | | | LC50 | 96h | Fish | 42mg/L | 4 | | | EC50 | 48h | Crustacea | 2mg/L | 4 | | acrylates/ C10-30-alkyl
acrylate crosspolymer | Endpoint | Test Duration (hr) | Species | Value | Source | | | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | EC50 | 96h | Algae or other aquatic plants | 169mg/l | 1 | | | BCF | 1008h | Fish | <0.4 | 7 | | | EC50 | 72h | Algae or other aquatic plants | >107<260mg/l | 2 | | triothanolamino | | | | | 2 | | triethanolamine | NOEC(ECx) | Not Available | Fish | >1mg/l | | | triethanolamine | NOEC(ECx) | Not Available
48h | Fish Crustacea | >1mg/l
565.2-
658.3mg/l | 4 | For Ethanol: log Kow: -0.31 to -0.32; Koc 1: Estimated BCF= 3; Half-life (hr) air: 144; Half-life (hr) H2O surface water: 144: Henry's atm m3 /mol: 6.29E-06; BOD 5 if unstated: 0.93-1.67,63% COD: 1.99-2.11,97%; ThOD: 2.1. Environmental Fate: Terrestrial - Ethanol quickly biodegrades in soil but may leach into ground water; most is lost by evaporation. Ethanol is expected to have very high mobility in soil. Volatilization of ethanol from moist soil surfaces is expected to be an important fate process. The potential for volatilization of ethanol from dry soil surfaces may exist. Biodegradation is expected to be an important fate process for ethanol based on half-lives on the order of a few days for ethanol in sandy soil/groundwater microcosms. #### SoftShield Hand Sanitiser Issue Date: 07/03/2025 Print Date: 07/03/2025 Atmospheric Fate: Ethanol is expected to exist solely as a vapour in the ambient atmosphere. Vapour-phase ethanol is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 5 days. Ethanol readily degraded by reaction with photochemically produced hydroxy radicals; release into air will result in photodegradation and wet deposition. Aquatic Fate: When released into water ethanol readily evaporates and is biodegradable. Ethanol is not expected to adsorb to suspended solids and sediment. Volatilization from water surfaces is expected and volatilization half-lives for a model river and model lake are 3 and 39 days, respectively. Bioconcentration in aquatic organisms is considered to be low. Hydrolysis and photolysis in sunlit surface waters is not expected to be an important environmental fate process for ethanol and is unlikely to be persistent in aquatic environments. for triethanolamine: Koc: 3 Half-life (hr) air: 4 Henry's atm m3 /mol: 3.38E-19 BOD 5 if unstated: nil-0.17 COD: 1.5 ThOD: 2.04; 1.61 p/p ThOD (measured) 1.52 mg/mg (Union Carbide) ThOD (calculated) 1.61 mg/mg (Union Carbide) BCF: <1 Biodegradability: 96% DOC reduction (OECD Method 301E) BOD; Day 5: 8%, Day 10: 9%, Day 20: 66% Passes Sturm, AFNOR tests for biodegradability. Reaches more than 70% mineralisation in OECD test for inherent biodegradability (Zahn-Wellens test) Theoretical oxygen demand ThOD) is calculated at 1.61 p/p. Degradation is expected in the atmospheric environment within minutes to hours. Log octanol/ water partition coefficient (log Kow) is estimated using the Pomona-Medchem structural fragment to be -1.746. Potential for the mobility in soil is very high (Koc betweeen 0 and 50). Henry's Law Constant (H) is estimated to be 3.38E-19 atm.m3/mol (25 C) Log soil organic carbon partition coefficient (log Koc) is estimated to be 0.48. When released into soil the material is expected to degrade without significant evaporation. A half-life of between 1 to 10 days is expected. Material has shown a potential to biodegrade. Attains >99% degradation in activated sludge in 24 hours. Attains >99% degradation in soil is 1-14 days. Bioconcentration potential is low (BCF less than 100 or log Kow less than 3). When released into water, the material is expected to degrade with a half-life of about 1 to 10 days. Because the material has a log octanol-water coefficient of less than 3 it is not expected to bioaccumulate. Release to air is expected to produce photolytic degradation resulting in hydroxyl radicals. The material is expected to be removed from the atmosphere by dry and wet deposition (half-life between 1 and 10 days). #### **Environmental fate:** Transport: Due to the high water solubility and low vapour pressure of triethanolamine, it is likely to partition preferentially into the water phase from which volatilisation to the atmosphere is likely to be only a minor removal process. The low log Kow value indicates that bioaccumulation and adsorption onto Water: If released to water, triethanolamine should biodegrade. The half-life of this compound is expected to range from a few days to a few weeks depending on the degree of acclimation of the system. Bioconcentration in aquatic organisms, adsorption to suspended solids and sediments, and volatilization are not expected to be important fate processes in water. Triethanolamine does not decompose or hydrolyze in contact with water and there is no abiotic degradation Biodegradation: Triethanolamine is readily biodegradable, possibly after a short acclimation period . The data indicate that triethanolamine is inherently biodegradable. Extensive removal due to biodegradation is to be expected in sewage treatment plants . In the ready biodegradation tests, triethanolamine was readily biodegradable in the AFNOR (97% degradation based on DOC removal), STURM (91% degradation based on CO2 evolution) and OECD Screening test (96% degradation based on DOC removal, but little degradation was observed in the MITI (14 day test; 2% removal based on BOD and Closed Bottle (0-9% removal based on BOD). # **Ecotoxicity:** Material is practically non-toxic to aquatic organisms on an acute basis (LC50 >100 mg/l in most sensitive species) Fish LC50 (96 h): fathead minnow (Pimephales promelas) 1800-11800 mg/l; fathead minnow 5600 mg/l (Union Carbide); bluegill (Leuciscus idus) 7930 mg/l; goldfish (Carassius auratus) 5000 mg/l Daphnia magna LC50 (24 h): 1390 - 2038 mg/l Daphnia magna LC50 (48 h): 947 mg/l (Union Carbide) Algae LC50 (48 h): 750 mg/l Brine shrimp LC50: (Artemia salina) 5600 mg/l Maximum acceptable toxicant concentration (MATC): 22 mg/l Algal growth inhibition (Scenedesmus subspicatus) EC50: 470-750 mg/l Inhibition of bacteria in effluent: 50% inhibition: >10000 mg/l Inhibitory concentration (IC50) is OECD "Activated Sludge, Respiration Inhibition Test" (Guideline 209) is >1000 mg/l. DO NOT discharge into sewer or waterways. # Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |--------------------|-----------------------------|-----------------------------| | ethanol, denatured | LOW (Half-life = 2.17 days) | LOW
(Half-life = 5.08 days) | | triethanolamine | LOW | LOW | # Bioaccumulative potential | Ingredient | Bioaccumulation | | |--------------------|----------------------|--| | ethanol, denatured | LOW (LogKOW = -0.31) | | | triethanolamine | LOW (BCF = 3.9) | | # Mobility in soil | Ingredient | Mobility | |--------------------|--------------------| | ethanol, denatured | HIGH (Log KOC = 1) | # SoftShield Hand Sanitiser | Ingredient | Mobility | |-----------------|--------------------| | triethanolamine | LOW (Log KOC = 10) | # **SECTION 13 Disposal considerations** # Waste treatment methods Product / Packaging disposal - Recycle wherever possible or consult manufacturer for recycling options. - Consult State Land Waste Management Authority for disposal. - DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. - ▶ Recycle wherever possible. - · Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. Issue Date: 07/03/2025 Print Date: 07/03/2025 - Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material). - ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. Ensure that the hazardous substance is disposed in accordance with the Hazardous Substances (Disposal) Notice 2017 # **Disposal Requirements** Packages that have been in direct contact with the hazardous substance must be only disposed if the hazardous substance was appropriately removed and cleaned out from the package. The package must be disposed according to the manufacturer's directions taking into account the material it is made of. Packages which hazardous content have been appropriately treated and removed may be recycled. The hazardous substance must only be disposed if it has been treated by a method that changed the characteristics or composition of the substance and it is no longer hazardous. DO NOT deposit the hazardous substance into or onto a landfill or a sewage facility. Burning the hazardous substance must happen under controlled conditions with no person or place exposed to - (1) a blast overpressure of more than 9 kPa; or - (2) an unsafe level of heat radiation. The disposed hazardous substance must not come into contact with class 1 or 5 substances. # **SECTION 14 Transport information** # **Labels Required** | | 3 | |------------------|------| | Marine Pollutant | NO | | HAZCHEM | •2YE | # Land transport (UN) | 14.1. UN number or ID number | 1170 | | | | |------------------------------------|-------------------------------------|--|--|--| | 14.2. UN proper shipping name | ETHANOL SOLUTION | ETHANOL SOLUTION (ETHYL ALCOHOL SOLUTION); ETHANOL SOLUTION (ETHYL ALCOHOL SOLUTION) | | | | 14.3. Transport hazard class(es) | Class
Subsidiary Hazard | 3 Not Applicable | | | | 14.4. Packing group | II | | | | | 14.5. Environmental hazard | Not Applicable | | | | | 14.6. Special precautions for user | Special provisions Limited quantity | 144
1 L | | | # Air transport (ICAO-IATA / DGR) | 14.1. UN number | 1170 | |-------------------------------|----------------------------| | 14.2. UN proper shipping name | Ethanol. Solution; Ethanol | Issue Date: 07/03/2025 Part Number: Not Available Version No: 2.6 Print Date: 07/03/2025 # SoftShield Hand Sanitiser | 14.3. Transport hazard class(es) | ICAO/IATA Class | 3 | | |------------------------------------|--|------------------------------|-------------| | | ICAO / IATA Subsidiary Hazard | Not Applicable | | | | ERG Code | 3L | | | 14.4. Packing group | Ш | | | | 14.5. Environmental hazard | Not Applicable | | | | 14.6. Special precautions for user | Special provisions | | A3 A58 A180 | | | Cargo Only Packing Instructions | | 364 | | | Cargo Only Maximum Qty / Pack | | 60 L | | | Passenger and Cargo Packing Instructions | | 353 | | | Passenger and Cargo Maximum Qty / Pack | | 5 L | | | Passenger and Cargo Limited Qu | uantity Packing Instructions | Y341 | | | Passenger and Cargo Limited Maximum Qty / Pack | | 1 L | # Sea transport (IMDG-Code / GGVSee) | 1170 | | | |--|---|---| | ETHANOL (ETHYL ALCOHOL); ETHANOL SOLUTION (ETHYL ALCOHOL SOLUTION) | | | | IMDG Class IMDG Subsidiary Ha | | Not Applicable | | П | | | | Not Applicable | | | | EMS Number Special provisions Limited Quantities | 144 | -D | | | ETHANOL (ETHYL AL IMDG Class IMDG Subsidiary Ha II Not Applicable EMS Number | ETHANOL (ETHYL ALCOHOL) IMDG Class : IMDG Subsidiary Hazard II Not Applicable EMS Number F-E, S Special provisions 144 | # 14.7. Maritime transport in bulk according to IMO instruments # 14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable # 14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |---|---------------| | ethanol, denatured | Not Available | | acrylates/ C10-30-alkyl acrylate crosspolymer | Not Available | | triethanolamine | Not Available | # 14.7.3. Transport in bulk in accordance with the IGC Code | Product name | Ship Type | |---|---------------| | ethanol, denatured | Not Available | | acrylates/ C10-30-alkyl acrylate crosspolymer | Not Available | | triethanolamine | Not Available | # **SECTION 15 Regulatory information** # Safety, health and environmental regulations / legislation specific for the substance or mixture This substance is to be managed using the conditions specified in an applicable Group Standard | HSR Number | Group Standard | |------------|---| | HSR002528 | Cleaning Products (Flammable) Group Standard 2020 | Issue Date: 07/03/2025 Version No: 2.6 Print Date: 07/03/2025 SoftShield Hand Sanitiser ### ethanol, denatured is found on the following regulatory lists New Zealand Approved Hazardous Substances with controls New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data New Zealand Inventory of Chemicals (NZIoC) New Zealand Workplace Exposure Standards (WES) # acrylates/ C10-30-alkyl acrylate crosspolymer is found on the following regulatory lists Not Applicable ### triethanolamine is found on the following regulatory lists International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Not Classified as Carcinogenic New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data New Zealand Inventory of Chemicals (NZIoC) New Zealand Workplace Exposure Standards (WES) # **Additional Regulatory Information** Not Applicable # **Hazardous Substance Location** Subject to the Health and Safety at Work (Hazardous Substances) Regulations 2017. | Hazard Class | Quantity (Closed Containers) | Quantity (Open Containers) | |--------------|---|----------------------------| | 3.1B | 100 L in containers more than 5 L | 50 L | | 3.1B | 250 L in containers up to and including 5 L | 50 L | | 4.1.1A | 1 kg | 1 kg | # **Certified Handler** Subject to Part 4 of the Health and Safety at Work (Hazardous Substances) Regulations 2017. | Class of substance | Quantities | |--------------------|----------------| | Not Applicable | Not Applicable | Refer Group Standards for further information # Maximum quantities of certain hazardous substances permitted on passenger service vehicles Subject to Regulation 13.14 of the Health and Safety at Work (Hazardous Substances) Regulations 2017. | Hazard Class | Gas (aggregate water capacity in mL) | Liquid
(L) | Solid
(kg) | Maximum quantity per package for each classification | |--------------|--------------------------------------|---------------|---------------|--| | 3.1B | | | | 1L | | 4.1.1A | | | | 0.5 kg | # **Tracking Requirements** Not Applicable # **National Inventory Status** | National Inventory | Status | |--|---| | Australia - AIIC / Australia
Non-Industrial Use | Yes | | Canada - DSL | Yes | | Canada - NDSL | No (ethanol, denatured; triethanolamine) | | China - IECSC | Yes | | Europe - EINEC / ELINCS /
NLP | Yes | | Japan - ENCS | Yes | | Korea - KECI | Yes | | New Zealand - NZIoC | Yes | | Philippines - PICCS | Yes | | USA - TSCA | All chemical substances in this product have been designated as TSCA Inventory 'Active' | | Taiwan - TCSI | Yes | | Mexico - INSQ | Yes | Page 20 of 20 Version No. 2.6 # SoftShield Hand Sanitiser Issue Date: 07/03/2025 Print Date: 07/03/2025 | National Inventory | Status | |--------------------|--| |
Vietnam - NCI | Yes | | Russia - FBEPH | Yes | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. | # **SECTION 16 Other information** | Revision Date | 07/03/2025 | |---------------|------------| | Initial Date | 07/03/2025 | # Other information The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations** - PC TWA: Permissible Concentration-Time Weighted Average - ▶ PC STEL: Permissible Concentration-Short Term Exposure Limit - ▶ IARC: International Agency for Research on Cancer - ▶ ACGIH: American Conference of Governmental Industrial Hygienists - ▶ STEL: Short Term Exposure Limit - ► TEEL: Temporary Emergency Exposure Limit。 - ▶ IDLH: Immediately Dangerous to Life or Health Concentrations - ▶ ES: Exposure Standard - ▶ OSF: Odour Safety Factor - ▶ NOAEL: No Observed Adverse Effect Level - LOAEL: Lowest Observed Adverse Effect Level - ▶ TLV: Threshold Limit Value - ▶ LOD: Limit Of Detection - OTV: Odour Threshold Value - ▶ BCF: BioConcentration Factors - ▶ BEI: Biological Exposure Index - ▶ DNEL: Derived No-Effect Level - ▶ PNEC: Predicted no-effect concentration - ▶ MARPOL: International Convention for the Prevention of Pollution from Ships - ▶ IMSBC: International Maritime Solid Bulk Cargoes Code - IGC: International Gas Carrier Code - ▶ IBC: International Bulk Chemical Code - ▶ AIIC: Australian Inventory of Industrial Chemicals - DSL: Domestic Substances List - ▶ NDSL: Non-Domestic Substances List - ▶ IECSC: Inventory of Existing Chemical Substance in China - ▶ EINECS: European INventory of Existing Commercial chemical Substances - ▶ ELINCS: European List of Notified Chemical Substances - ▶ NLP: No-Longer Polymers - ▶ ENCS: Existing and New Chemical Substances Inventory - ▶ KECI: Korea Existing Chemicals Inventory - NZIoC: New Zealand Inventory of Chemicals - ▶ PICCS: Philippine Inventory of Chemicals and Chemical Substances - TSCA: Toxic Substances Control Act - ▶ TCSI: Taiwan Chemical Substance Inventory - ▶ INSQ: Inventario Nacional de Sustancias Químicas - NCI: National Chemical Inventory - ▶ FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances